Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(3): 030503, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34328776

RESUMEN

We consider the problem of jointly estimating expectation values of many Pauli observables, a crucial subroutine in variational quantum algorithms. Starting with randomized measurements, we propose an efficient derandomization procedure that iteratively replaces random single-qubit measurements by fixed Pauli measurements; the resulting deterministic measurement procedure is guaranteed to perform at least as well as the randomized one. In particular, for estimating any L low-weight Pauli observables, a deterministic measurement on only of order log(L) copies of a quantum state suffices. In some cases, for example, when some of the Pauli observables have high weight, the derandomized procedure is substantially better than the randomized one. Specifically, numerical experiments highlight the advantages of our derandomized protocol over various previous methods for estimating the ground-state energies of small molecules.

2.
Phys Rev Lett ; 126(19): 190505, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34047595

RESUMEN

We study the performance of classical and quantum machine learning (ML) models in predicting outcomes of physical experiments. The experiments depend on an input parameter x and involve execution of a (possibly unknown) quantum process E. Our figure of merit is the number of runs of E required to achieve a desired prediction performance. We consider classical ML models that perform a measurement and record the classical outcome after each run of E, and quantum ML models that can access E coherently to acquire quantum data; the classical or quantum data are then used to predict the outcomes of future experiments. We prove that for any input distribution D(x), a classical ML model can provide accurate predictions on average by accessing E a number of times comparable to the optimal quantum ML model. In contrast, for achieving an accurate prediction on all inputs, we prove that the exponential quantum advantage is possible. For example, to predict the expectations of all Pauli observables in an n-qubit system ρ, classical ML models require 2^{Ω(n)} copies of ρ, but we present a quantum ML model using only O(n) copies. Our results clarify where the quantum advantage is possible and highlight the potential for classical ML models to address challenging quantum problems in physics and chemistry.

3.
Phys Rev Lett ; 125(20): 200501, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258654

RESUMEN

We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].

4.
Phys Rev Lett ; 123(2): 020501, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386518

RESUMEN

We propose a new cellular automaton (CA), the sweep rule, which generalizes Toom's rule to any locally Euclidean lattice. We use the sweep rule to design a local decoder for the toric code in d≥3 dimensions, the sweep decoder, and rigorously establish a lower bound on its performance. We also numerically estimate the sweep decoder threshold for the three-dimensional toric code on the cubic and body-centered cubic lattices for phenomenological phase-flip noise. Our results lead to new CA decoders with provable error-correction thresholds for other topological quantum codes including the color code.

5.
Phys Rev Lett ; 120(18): 180501, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775352

RESUMEN

Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p_{3DCC}^{(1)}≃1.9% and p_{3DCC}^{(2)}≃27.6%. We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

6.
Nat Commun ; 15(1): 895, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291046

RESUMEN

Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only [Formula: see text] data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require [Formula: see text] data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as [Formula: see text] in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.

7.
Nat Commun ; 14(1): 1952, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029105

RESUMEN

Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem.

8.
Science ; 377(6613): eabk3333, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137032

RESUMEN

Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over traditional methods have not been firmly established. In this work, we prove that classical ML algorithms can efficiently predict ground-state properties of gapped Hamiltonians after learning from other Hamiltonians in the same quantum phase of matter. By contrast, under a widely accepted conjecture, classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that classical ML algorithms can efficiently classify a wide range of quantum phases. Extensive numerical experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases.

9.
Science ; 376(6598): 1182-1186, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679419

RESUMEN

Quantum technology promises to revolutionize how we learn about the physical world. An experiment that processes quantum data with a quantum computer could have substantial advantages over conventional experiments in which quantum states are measured and outcomes are processed with a classical computer. We proved that quantum machines could learn from exponentially fewer experiments than the number required by conventional experiments. This exponential advantage is shown for predicting properties of physical systems, performing quantum principal component analysis, and learning about physical dynamics. Furthermore, the quantum resources needed for achieving an exponential advantage are quite modest in some cases. Conducting experiments with 40 superconducting qubits and 1300 quantum gates, we demonstrated that a substantial quantum advantage is possible with today's quantum processors.

10.
Phys Rev Lett ; 106(13): 130504, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21517365

RESUMEN

We propose and analyze an interface between a topological qubit and a superconducting flux qubit. In our scheme, the interaction between Majorana fermions in a topological insulator is coherently controlled by a superconducting phase that depends on the quantum state of the flux qubit. A controlled-phase gate, achieved by pulsing this interaction on and off, can transfer quantum information between the topological qubit and the superconducting qubit.

11.
Science ; 373(6559): 1092, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34516845

RESUMEN

Titan of theoretical physics.

13.
Nat Commun ; 9(1): 78, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311599

RESUMEN

Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.

14.
Science ; 360(6385): 156, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29650661
15.
Science ; 336(6085): 1130-3, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22654052

RESUMEN

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

16.
Phys Rev Lett ; 96(11): 110404, 2006 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-16605802

RESUMEN

We formulate a universal characterization of the many-particle quantum entanglement in the ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a disk in the plane, with a smooth boundary of length L, large compared to the correlation length. In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a marginal density operator rho for the degrees of freedom in the interior. The von Neumann entropy of rho, a measure of the entanglement of the interior and exterior variables, has the form S(rho) = alphaL - gamma + ..., where the ellipsis represents terms that vanish in the limit L --> infinity. We show that - gamma is a universal constant characterizing a global feature of the entanglement in the ground state. Using topological quantum field theory methods, we derive a formula for gamma in terms of properties of the superselection sectors of the medium.

17.
Phys Rev Lett ; 96(5): 050504, 2006 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-16486913

RESUMEN

We prove a new version of the quantum accuracy threshold theorem that applies to non-Markovian noise with algebraically decaying spatial correlations. We consider noise in a quantum computer arising from a perturbation that acts collectively on pairs of qubits and on the environment, and we show that an arbitrarily long quantum computation can be executed with high reliability in D spatial dimensions, if the perturbation is sufficiently weak and decays with the distance r between the qubits faster than 1/r(D).

18.
Phys Rev Lett ; 90(5): 057902, 2003 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-12633399

RESUMEN

We prove the security of the Bennett-Brassard (BB84) quantum key distribution protocol for an arbitrary source whose averaged states are basis independent, a condition that is automatically satisfied if the source is suitably designed. The proof is based on the observation that, to an adversary, the key extraction process is equivalent to a measurement in the sigma(x) basis performed on a pure sigma(z)-basis eigenstate. The dependence of the achievable key length on the bit error rate is the same as that established by Shor and Preskill [Phys. Rev. Lett. 85, 441 (2000)]] for a perfect source, indicating that the defects in the source are efficiently detected by the protocol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA