Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 38, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38360697

RESUMEN

BACKGROUND: Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora. RESULTS: We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k-900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao's defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp. CONCLUSIONS: Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.


Asunto(s)
Cacao , Phytophthora , Ácido Shikímico/análogos & derivados , Humanos , Cacao/genética , Phytophthora/fisiología , Fitomejoramiento , Enfermedades de las Plantas/genética
2.
BMC Plant Biol ; 24(1): 601, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926852

RESUMEN

BACKGROUND: Theobroma cacao, the cocoa tree, is a tropical crop grown for its highly valuable cocoa solids and fat which are the basis of a 200-billion-dollar annual chocolate industry. However, the long generation time and difficulties associated with breeding a tropical tree crop have limited the progress of breeders to develop high-yielding disease-resistant varieties. Development of marker-assisted breeding methods for cacao requires discovery of genomic regions and specific alleles of genes encoding important traits of interest. To accelerate gene discovery, we developed a gene atlas composed of a large dataset of replicated transcriptomes with the long-term goal of progressing breeding towards developing high-yielding elite varieties of cacao. RESULTS: We describe the creation of the Cacao Transcriptome Atlas, its global characterization and define sets of genes co-regulated in highly organ- and temporally-specific manners. RNAs were extracted and transcriptomes sequenced from 123 different tissues and stages of development representing major organs and developmental stages of the cacao lifecycle. In addition, several experimental treatments and time courses were performed to measure gene expression in tissues responding to biotic and abiotic stressors. Samples were collected in replicates (3-5) to enable statistical analysis of gene expression levels for a total of 390 transcriptomes. To promote wide use of these data, all raw sequencing data, expression read mapping matrices, scripts, and other information used to create the resource are freely available online. We verified our atlas by analyzing the expression of genes with known functions and expression patterns in Arabidopsis (ACT7, LEA19, AGL16, TIP13, LHY, MYB2) and found their expression profiles to be generally similar between both species. We also successfully identified tissue-specific genes at two thresholds in many tissue types represented and a set of genes highly conserved across all tissues. CONCLUSION: The Cacao Gene Atlas consists of a gene expression browser with graphical user interface and open access to raw sequencing data files as well as the unnormalized and CPM normalized read count data mapped to several cacao genomes. The gene atlas is a publicly available resource to allow rapid mining of cacao gene expression profiles. We hope this resource will be used to help accelerate the discovery of important genes for key cacao traits such as disease resistance and contribute to the breeding of elite varieties to help farmers increase yields.


Asunto(s)
Cacao , Redes Reguladoras de Genes , Transcriptoma , Cacao/genética , Cacao/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Perfilación de la Expresión Génica , Especificidad de Órganos/genética
3.
J Exp Bot ; 69(22): 5403-5417, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30202979

RESUMEN

Genes of the CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) family influence meristem identity by controlling the balance between indeterminate and determinate growth, thereby profoundly impacting plant architecture. Artificial selection during cotton (Gossypium hirsutum) domestication converted photoperiodic trees to the day-neutral shrubs widely cultivated today. To understand the regulation of cotton architecture and exploit these principles to enhance crop productivity, we characterized the CETS gene family from tetraploid cotton. We demonstrate that genes of the TERMINAL FLOWER 1 (TFL1)-like clade show different roles in regulating growth patterns. Cotton has five TFL1-like genes: SELF-PRUNING (GhSP) is a single gene whereas there are two TFL1-like and BROTHER OF FT (BFT)-like genes, and these duplications are specific to the cotton lineage. All genes of the cotton TFL1-like clade delay flowering when ectopically expressed in transgenic Arabidopsis, with the strongest phenotypes failing to produce functional flowers. GhSP, GhTFL1-L2, and GhBFT-L2 rescue the early flowering Attfl1-14 mutant phenotype, and the encoded polypeptides interact with a cotton FD protein. Heterologous promoter::GUS fusions illustrate differences in the regulation of these genes, suggesting that genes of the GhTFL1-like clade may not act redundantly. Characterizations of the GhCETS family provide strategies for nuanced control of plant growth.


Asunto(s)
Genes de Plantas/genética , Gossypium/genética , Familia de Multigenes/genética , Proteínas de Plantas/genética , Factores de Edad , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Gossypium/efectos de la radiación , Meristema/genética , Meristema/crecimiento & desarrollo , Fotoperiodo , Proteínas de Plantas/metabolismo , Alineación de Secuencia
4.
New Phytol ; 212(1): 244-58, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27292411

RESUMEN

Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium/crecimiento & desarrollo , Gossypium/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética , Clonación Molecular , Domesticación , Ecotipo , Flores/fisiología , Silenciador del Gen , Gossypium/virología , Familia de Multigenes , Fotoperiodo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Tallos de la Planta/fisiología
5.
Plant Signal Behav ; 8(4): e23602, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23333977

RESUMEN

Flowering marks the change from indeterminate to determinate plant growth, and this developmental transition involves the activity of the Arabidopsis FLOWERING LOCUS T (FT) gene product and its orthologs. We demonstrated that when FT is ectopically expressed from a viral vector in cotton, a process referred to as virus induced flowering (VIF), it uncouples flowering from photoperiodic regulation and promotes determinate growth in aerial organs. The accelerated switch to determinate growth affected cotton floral buds and sympodial growth, but did not disrupt floral organogenesis. These results can be interpreted in the context of the balance model, which argues that the balance of indeterminate and determinate growth is influenced by the relative abundance of indeterminate and determinate factors in the growing apices. These results emphasize the expanding role of FT in affecting general determinate growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores , Gossypium/genética , Meristema , Organogénesis/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gossypium/metabolismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Fotoperiodo , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA