Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Blood ; 120(16): 3371-81, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22936663

RESUMEN

Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and ß-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and ß-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1-induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and ß-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis.


Asunto(s)
Angiopoyetina 1/farmacología , Movimiento Celular/fisiología , Endotelio Vascular/metabolismo , Neovascularización Fisiológica/fisiología , Proteína Quinasa C/metabolismo , beta Catenina/metabolismo , Uniones Adherentes/metabolismo , Animales , Animales Modificados Genéticamente , Aorta/citología , Aorta/metabolismo , Células COS , Bovinos , Movimiento Celular/efectos de los fármacos , Polaridad Celular , Células Cultivadas , Chlorocebus aethiops , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endotelio Vascular/citología , Técnica del Anticuerpo Fluorescente , Uniones Intercelulares/metabolismo , Microinyecciones , Cicatrización de Heridas , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
2.
Elife ; 42015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25714926

RESUMEN

Angiopoietin-like proteins (angptls) are capable of ex vivo expansion of mouse and human hematopoietic stem and progenitor cells (HSPCs). Despite this intriguing ability, their mechanism is unknown. In this study, we show that angptl2 overexpression is sufficient to expand definitive HSPCs in zebrafish embryos. Angptl1/2 are required for definitive hematopoiesis and vascular specification of the hemogenic endothelium. The loss-of-function phenotype is reminiscent of the notch mutant mindbomb (mib), and a strong genetic interaction occurs between angptls and notch. Overexpressing angptl2 rescues mib while overexpressing notch rescues angptl1/2 morphants. Gene expression studies in ANGPTL2-stimulated CD34(+) cells showed a strong MYC activation signature and myc overexpression in angptl1/2 morphants or mib restored HSPCs formation. ANGPTL2 can increase NOTCH activation in cultured cells and ANGPTL receptor interacted with NOTCH to regulate NOTCH cleavage. Together our data provide insight to the angptl-mediated notch activation through receptor interaction and subsequent activation of myc targets.


Asunto(s)
Angiopoyetinas/genética , Células Madre Hematopoyéticas/metabolismo , Receptores Notch/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Proteína 1 Similar a la Angiopoyetina , Proteína 2 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , Células Cultivadas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Hematopoyesis/genética , Humanos , Células K562 , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Microscopía Confocal , Unión Proteica , Interferencia de ARN , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Imagen de Lapso de Tiempo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
3.
Genome Biol ; 15(3): R53, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24667040

RESUMEN

BACKGROUND: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.


Asunto(s)
Bases de Datos Genéticas/normas , Pruebas Genéticas/métodos , Genómica/métodos , Revisión de la Investigación por Pares , Análisis de Secuencia de ADN/métodos , Niño , Femenino , Organización de la Financiación , Pruebas Genéticas/economía , Pruebas Genéticas/normas , Genómica/economía , Genómica/normas , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Humanos , Masculino , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Análisis de Secuencia de ADN/economía , Análisis de Secuencia de ADN/normas
4.
Stem Cell Reports ; 1(5): 425-36, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24286030

RESUMEN

Deletion of caudal/cdx genes alters hox gene expression and causes defects in posterior tissues and hematopoiesis. Yet, the defects in hox gene expression only partially explain these phenotypes. To gain deeper insight into Cdx4 function, we performed chromatin immunoprecipitation sequencing (ChIP-seq) combined with gene-expression profiling in zebrafish, and identified the transcription factor spalt-like 4 (sall4) as a Cdx4 target. ChIP-seq revealed that Sall4 bound to its own gene locus and the cdx4 locus. Expression profiling showed that Cdx4 and Sall4 coregulate genes that initiate hematopoiesis, such as hox, scl, and lmo2. Combined cdx4/sall4 gene knockdown impaired erythropoiesis, and overexpression of the Cdx4 and Sall4 target genes scl and lmo2 together rescued the erythroid program. These findings suggest that auto- and cross-regulation of Cdx4 and Sall4 establish a stable molecular circuit in the mesoderm that facilitates the activation of the blood-specific program as development proceeds.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas de Homeodominio/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Mesodermo/citología , Factores de Transcripción/genética , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA