Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 12(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37765486

RESUMEN

Highly adapted obligate endoparasites of the root system, root-knot nematodes (Meloidogyne spp.), cause great damage to agricultural crops. Our research is aimed at the assessment of nematicidal activity and effectiveness of antagonist fungal and bacterial strains against the most common type of root-knot nematode in the south of Russia. By means of molecular genetic identification, it was found that in the south of Russia, the species Meloidogyne hapla Chitwood, 1949 and Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949 cause galls on the roots of open-ground and greenhouse tomato. Screening of microbial agents against second-stage juvenile (J2) M. hapla was carried out in the laboratory. At the end of the experiment, two liquid fungal cultures of Paecilomyces lilacinus BK-6 and Metarhizium anisopliae BK-2 were isolated, the nematicidal activity of which reached 100.0 and 70.2%, and exceeded the values of the biological standard (Nemotafagin-Mikopro) by 38.4% and 8.8%. The highest biological efficacy was noted in the liquid cultures of P. lilacinus BK-6, M. anisopliae BK-2, and Arthrobotrys conoides BK-8 when introduced into the soil before planting tomato. The number of formed galls on the roots was lower in comparison with the control by 81.0%, 75.5%, and 74.4%.

2.
Biosensors (Basel) ; 8(4)2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551630

RESUMEN

Fungal diseases of plants are of great economic importance causing 70⁻80% of crop losses associated with microbial plant pathogens. Advanced on-site disease diagnostics is very important to maximize crop productivity. In this study, diagnostic systems have been developed for simultaneous detection and identification of six fungal pathogens using 48-well microarrays (micromatrices) for qPCR. All oligonucleotide sets were tested for their specificity using 59 strains of target and non-target species. Detection limit of the developed test systems varied from 0.6 to 43.5 pg of DNA depending on target species with reproducibility within 0.3-0.7% (standard deviation). Diagnostic efficiency of test systems with stabilized and freeze-dried PCR master-mixes did not significantly differ from that of freshly prepared microarrays, though detection limit increased. Validation of test systems on 30 field samples of potato plants showed perfect correspondence with the results of morphological identification of pathogens. Due to the simplicity of the analysis and the automated data interpretation, the developed microarrays have good potential for on-site use by technician-level personnel, as well as for high-throughput monitoring of fungal potato pathogens.


Asunto(s)
Hongos/clasificación , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Solanum tuberosum/microbiología , Hongos/genética , Límite de Detección , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA