Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(18)2020 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-32899919

RESUMEN

Five-sixths nephrectomy (5/6Nx) model is widely used for studying the mechanisms involved in chronic kidney disease (CKD) progression, a kidney pathology that has increased dramatically in recent years. Mitochondrial impairment is a key mechanism that aggravates CKD progression; however, the information on mitochondrial bioenergetics and redox alterations along a time course in a 5/6Nx model is still limited and in some cases contradictory. Therefore, we performed for the first time a time-course study of mitochondrial alterations by high-resolution respirometry in the 5/6Nx model. Our results show a decrease in mitochondrial ß-oxidation at early times, as well as a permanent impairment in adenosine triphosphate (ATP) production in CI-linked respiration, a permanent oxidative state in mitochondria and decoupling of these organelles. These pathological alterations are linked to the early decrease in complex I and ATP synthase activities and to the further decrease in complex III activity. Therefore, our results may suggest that mitochondrial bioenergetics impairment is an early event in renal damage, whose persistence in time aggravates CKD development in the 5/6Nx model.


Asunto(s)
Mitocondrias/metabolismo , Nefrectomía/efectos adversos , Estrés Oxidativo/fisiología , Insuficiencia Renal Crónica , Animales , Progresión de la Enfermedad , Metabolismo Energético , Hemodinámica/fisiología , Riñón/irrigación sanguínea , Riñón/metabolismo , Riñón/patología , Riñón/cirugía , Masculino , Mitocondrias/patología , Nefrectomía/métodos , Oxidación-Reducción , Consumo de Oxígeno/fisiología , Complicaciones Posoperatorias/metabolismo , Complicaciones Posoperatorias/patología , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Factores de Tiempo
2.
Biology (Basel) ; 10(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919054

RESUMEN

The five-sixth nephrectomy (5/6Nx) model is widely used to study the mechanisms involved in chronic kidney disease (CKD) progression. Mitochondrial impairment is a critical mechanism that favors CKD progression. However, until now, there are no temporal studies of the change in mitochondrial biogenesis and dynamics that allow determining the role of these processes in mitochondrial impairment and renal damage progression in the 5/6Nx model. In this work, we determined the changes in mitochondrial biogenesis and dynamics markers in remnant renal mass from days 2 to 28 after 5/6Nx. Our results show a progressive reduction in mitochondrial biogenesis triggered by reducing two principal regulators of mitochondrial protein expression, the peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and the peroxisome proliferator-activated receptor alpha. Furthermore, the reduction in mitochondrial biogenesis proteins strongly correlates with the increase in renal damage markers. Additionally, we found a slow and gradual change in mitochondrial dynamics from fusion to fission, favoring mitochondrial fragmentation at later stages after 5/6Nx. Together, our results suggest that 5/6Nx induces the progressive reduction in mitochondrial mass over time via the decrease in mitochondrial biogenesis factors and a slow shift from mitochondrial fission to fusion; both mechanisms favor CKD progression in the remnant renal mass.

3.
Biology (Basel) ; 10(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34356526

RESUMEN

Our work evaluated cardiac function and mitochondrial bioenergetics parameters in hearts from male Wistar rats subjected to the UUO model during 28 days of progression. We measured markers of kidney damage and inflammation in plasma and renal fibrosis by histological analysis and Western blot. Cardiac function was evaluated by echocardiography and proteins involved in cardiac damage by Western blot. Oxygen consumption and transmembrane potential were monitored in cardiac mitochondria using high-resolution respirometry. We also determined the activity of ATP synthase and antioxidant enzymes such as glutathione peroxidase, glutathione reductase, and catalase. Our results show that, although renal dysfunction is established in animals subjected to ureteral obstruction, cardiac function is maintained along with mitochondrial function and antioxidant enzymes activity after 28 days of injury evolution. Our results suggest that renocardiac syndrome might develop but belatedly in obstruction-induced renal damage, opening the opportunity for treatment to prevent this condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA