Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ecol Lett ; 27(9): e14520, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39354906

RESUMEN

For marine species with planktonic dispersal, invasion of open ocean coastlines is impaired by the physical adversity of ocean currents moving larvae downstream and offshore. The extent species are affected by physical adversity depends on interactions of the currents with larval life history traits such as planktonic duration, depth and seasonality. Ecologists have struggled to understand how these traits expose species to adverse ocean currents and affect their ability to persist when introduced to novel habitat. We use a high-resolution global ocean model to isolate the role of ocean currents on the persistence of a larval-producing species introduced to every open coastline of the world. We find physical adversity to invasion varies globally by several orders of magnitude. Larval duration is the most influential life history trait because increased duration prolongs species' exposure to ocean currents. Furthermore, variation of physical adversity with life history elucidates how trade-offs between dispersal traits vary globally.


Asunto(s)
Especies Introducidas , Larva , Plancton , Animales , Larva/fisiología , Larva/crecimiento & desarrollo , Plancton/fisiología , Distribución Animal , Océanos y Mares , Movimientos del Agua , Modelos Biológicos , Rasgos de la Historia de Vida , Ecosistema
2.
Theor Popul Biol ; 153: 91-101, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451507

RESUMEN

Many species that are birthed in one location and become reproductive in another location can be treated as if in a one-dimensional habitat where dispersal is biased downstream. One example of such is planktonic larvae that disperse in coastal oceans, rivers, and streams. In these habitats, the dynamics of the dispersal are dominated by the movement of offspring in one direction and the distance between parents and offspring in the other direction does not matter. We study an idealized species with non-overlapping generations in a finite linear habitat that has no larval input from outside of the habitat and is therefore isolated from other populations. The most non-realistic assumption that we make is that there are non-overlapping generations, and this is an assumption to be considered in future work. We find that a biased dispersal in the habitat reduces the average time to the most recent common ancestor and causes the average location of the most recent common ancestor to move from the center of the habitat to the upstream edge of the habitat. Due to the decrease in the time to the most recent common ancestor and the shift of the average location to the upstream edge, the effective population size (Ne) no longer depends on the census size and is dependent on the dispersal statistics. We determine the average time and location of the most recent common ancestor as a function of the larval dispersal statistics. The location of the most recent common ancestor becomes independent of the length of the habitat and is only dependent on the location of the upstream edge and the larval dispersal statistics.


Asunto(s)
Ecosistema , Animales , Larva , Densidad de Población , Océanos y Mares
3.
J Acoust Soc Am ; 152(1): 201, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35931534

RESUMEN

A characteristic feature of the eastern Bering Sea (EBS) is a subsurface layer linked to seasonal sea ice (SSI) and defined by bottom temperatures less than 2 °C, which is termed the cold pool. Cold pool variability is directly tied to regional zooplankton and fish dynamics. Multifrequency (200 and 460 kHz) acoustic backscatter data were collected remotely using upward looking echosounders along the EBS shelf from 2008 and 2018 and used as a proxy of biological abundance. Acoustic data were coupled with bottom temperature and regional SSI data from the cold (2006-2013) and warm (2014-2018) regimes to assess the relationship between biological scattering communities and cold pool variation. Acoustic backscatter was 2 orders of magnitude greater during the cold regime than during the warm regime, with multifrequency analysis indicating a shift in the warm regime frequency-dependent scattering communities. Cold pool proxy SSI was a stronger predictor for biological scattering than bottom temperature in the cold regime, while warm regime bottom temperature and SSI were equal in predictive power and resulted in improved predictive model performance. Results suggest coupled cold pool and frequency-dependent scattering dynamics are a potential regime shift indicator and may be useful for management practices in surrounding Arctic ecosystems.


Asunto(s)
Ecosistema , Zooplancton , Animales , Regiones Árticas , Peces , Temperatura
4.
Theor Popul Biol ; 123: 9-17, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29729945

RESUMEN

In the ocean, propagules with a planktonic stage are typically dispersed some distance downstream of the parent generation, introducing an asymmetry to the dispersal. Ocean-dwelling species have also been shown to exhibit chaotic population dynamics. Therefore, we must better understand chaotic population dynamics under the influence of asymmetrical dispersal. Here, we examine a density-dependent population in a current, where the current has both a mean and stochastic component. In our finite domain, the current moves offspring in the downstream direction. This system displays a rich variety of dynamics from chaotic to steady-state, depending on the mean distance the offspring are moved downstream, the diffusive spread of the offspring, and the domain size. We find that asymmetric dispersal can act as a stabilizing or destabilizing mechanism, depending on the size of the mean dispersal distance relative to the other system parameters. As the strength of the current increases, the system can experience period-halving bifurcation cascades. Thus, we show that stability of chaotic aquatic populations is directly tied to the strength of the ocean current in their environment, and our model predicts increased prevalence of chaos with decreasing dispersal distance. Climate change is likely to alter the dispersal patterns of many species, and so our results have implications for conservation and management of said species. We discuss the management implications, particularly of exploited species.


Asunto(s)
Biología Marina , Modelos Biológicos , Animales , Océanos y Mares , Densidad de Población , Dinámica Poblacional
5.
Theor Popul Biol ; 114: 10-18, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28007580

RESUMEN

There is an ongoing debate about the applicability of chaotic and nonlinear models to ecological systems. Initial introduction of chaotic population models to the ecological literature was largely theoretical in nature and difficult to apply to real-world systems. Here, we build upon and expand prior work by performing an in-depth examination of the dynamical complexities of a spatially explicit chaotic population, within an ecologically applicable modeling framework. We pair a classic chaotic growth model (the logistic map) with explicit dispersal length scale and shape via a Gaussian dispersal kernel. Spatio-temporal heterogeneity is incorporated by applying stochastic perturbations throughout the spatial domain. We witness a variety of population dynamics dependent on the growth rate, dispersal distance, and domain size. Dispersal serves to eliminate chaotic population behavior for many of the parameter combinations tested. The model displays extreme sensitivity to changes in growth rate, dispersal distance, or domain size, but is robust to low-level stochastic population perturbations. Large and temporally consistent perturbations can lead to a change in population dynamics. Frequent switching occurs between chaotic/non-chaotic behaviors as dispersal distance, domain size, or growth rate increases. Small changes in these parameters are easy to imagine in real populations, and understanding or anticipating the abrupt resulting shifts in population dynamics is important for population management and conservation.


Asunto(s)
Ecosistema , Modelos Biológicos , Dinámica Poblacional , Dinámicas no Lineales
6.
Ecology ; 95(4): 1022-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24933820

RESUMEN

The evolutionary pressures that drive long larval planktonic durations in some coastal marine organisms, while allowing direct development in others, have been vigorously debated. We introduce into the argument the asymmetric dispersal of larvae by coastal currents and find that the strength of the currents helps determine which dispersal strategies are evolutionarily stable. In a spatially and temporally uniform coastal ocean of finite extent, direct development is always evolutionarily stable. For passively drifting larvae, long planktonic durations are stable when the ratio of mean to fluctuating currents is small and the rate at which larvae increase in size in the plankton is greater than the mortality rate (both in units of per time). However, larval behavior that reduces downstream larval dispersal for a given time in plankton will be selected for, consistent with widespread observations of behaviors that reduce dispersal of marine larvae. Larvae with long planktonic durations are shown to be favored not for the additional dispersal they allow, but for the additional fecundity that larval feeding in the plankton enables. We analyzed the spatial distribution of larval life histories in a large database of coastal marine benthic invertebrates and documented a link between ocean circulation and the frequency of planktotrophy in the coastal ocean. The spatial variation in the frequency of species with planktotrophic larvae is largely consistent with our theory; increases in mean currents lead to a decrease in the fraction of species with planktotrophic larvae over a broad range of temperatures.


Asunto(s)
Invertebrados/fisiología , Adaptación Fisiológica , Animales , Bases de Datos Factuales , Demografía , Aptitud Genética , Larva/crecimiento & desarrollo , Modelos Biológicos , Océanos y Mares , Temperatura , Zooplancton
7.
Proc Natl Acad Sci U S A ; 108(37): 15288-93, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21876126

RESUMEN

In a single well-mixed population, equally abundant neutral alleles are equally likely to persist. However, in spatially complex populations structured by an asymmetric dispersal mechanism, such as a coastal population where larvae are predominantly moved downstream by currents, the eventual frequency of neutral haplotypes will depend on their initial spatial location. In our study of the progression of two spatially separate, genetically distinct introductions of the European green crab (Carcinus maenas) along the coast of eastern North America, we captured this process in action. We documented the shift of the genetic cline in this species over 8 y, and here we detail how the upstream haplotypes are beginning to dominate the system. This quantification of an evolving genetic boundary in a coastal system demonstrates that novel genetic alleles or haplotypes that arise or are introduced into upstream retention zones (regions whose export of larvae is not balanced by import from elsewhere) will increase in frequency in the entire system. This phenomenon should be widespread when there is asymmetrical dispersal, in the oceans or on land, suggesting that the upstream edge of a species' range can influence genetic diversity throughout its distribution. Efforts to protect the upstream edge of an asymmetrically dispersing species' range are vital to conserving genetic diversity in the species.


Asunto(s)
Migración Animal/fisiología , Braquiuros/fisiología , Alelos , Animales , Braquiuros/genética , Canadá , Frecuencia de los Genes/genética , Geografía , Haplotipos/genética , Larva/fisiología , Modelos Genéticos , New England , Dinámica Poblacional , Especificidad de la Especie
8.
Biol Bull ; 245(3): 129-138, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39316744

RESUMEN

AbstractThe distance that offspring disperse from their parents affects how a species responds to habitat disturbance, climate change, and interspecific interactions. For many benthic species, this dispersal is via planktonic larvae, but the distance these larvae disperse is difficult to observe directly. Dispersal distance has usually been estimated indirectly by combining an observed quantity (e.g., the rate of spread of an invasive organism or genetic similarity between locations) with a model that links that quantity to the dispersal of larvae. The estimates of dispersal distance based on the speed of spread of invasive organisms have led many researchers to conclude that the larvae of most of these organisms disperse much less than would be expected if they were being passively transported by the expected ocean currents (Shanks et al.; Shanks). I argue that the discrepancy is instead caused by the choice of model linking dispersal distance to invasion speed. Their model neglected the impact of life history, population growth, and oceanographic parameters on invasion speed. When dispersal distance is estimated from a more complete model of invasion speed, it is found that larval dispersal distance is not much less than would be expected for larvae drifting in the observed ocean currents.


Asunto(s)
Distribución Animal , Larva , Océanos y Mares , Animales , Larva/fisiología , Larva/crecimiento & desarrollo , Movimientos del Agua , Modelos Biológicos , Especies Introducidas , Ecosistema , Organismos Acuáticos/fisiología
9.
Ann Rev Mar Sci ; 15: 167-202, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-35973720

RESUMEN

Exchange of material across the nearshore region, extending from the shoreline to a few kilometers offshore, determines the concentrations of pathogens and nutrients near the coast and the transport of larvae, whose cross-shore positions influence dispersal and recruitment. Here, we describe a framework for estimating the relative importance of cross-shore exchange mechanisms, including winds, Stokes drift, rip currents, internal waves, and diurnal heating and cooling. For each mechanism, we define an exchange velocity as a function of environmental conditions. The exchange velocity applies for organisms that keep a particular depth due to swimming or buoyancy. A related exchange diffusivity quantifies horizontal spreading of particles without enough vertical swimming speed or buoyancy to counteract turbulent velocities. This framework provides a way to determinewhich processes are important for cross-shore exchange for a particular study site, time period, and particle behavior.


Asunto(s)
Contaminantes Ambientales , Plancton , Animales , Larva , Natación , Frío
10.
Nat Ecol Evol ; 4(9): 1196-1203, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32632257

RESUMEN

The distance travelled by marine larvae varies by seven orders of magnitude. Dispersal shapes marine biodiversity, and must be understood if marine systems are to be well managed. Because warmer temperatures quicken larval development, larval durations might be systematically shorter in the tropics relative to those at high latitudes. Nevertheless, life history and hydrodynamics also covary with latitude-these also affect dispersal, precluding any clear expectation of how dispersal changes at a global scale. Here we combine data from the literature encompassing >750 marine organisms from seven phyla with oceanographic data on current speeds, to quantify the overall latitudinal gradient in larval dispersal distance. We find that planktonic duration increased with latitude, confirming predictions that temperature effects outweigh all others across global scales. However, while tropical species have the shortest planktonic durations, realized dispersal distances were predicted to be greatest in the tropics and at high latitudes, and lowest at mid-latitudes. At high latitudes, greater dispersal distances were driven by moderate current speed and longer planktonic durations. In the tropics, fast currents overwhelmed the effect of short planktonic durations. Our results contradict previous hypotheses based on biology or physics alone; rather, biology and physics together shape marine dispersal patterns.


Asunto(s)
Biodiversidad , Plancton , Animales , Organismos Acuáticos , Larva , Temperatura
11.
BMC Evol Biol ; 8: 235, 2008 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-18710549

RESUMEN

BACKGROUND: Genetic estimates of effective population size often generate surprising results, including dramatically low ratios of effective population size to census size. This is particularly true for many marine species, and this effect has been associated with hypotheses of "sweepstakes" reproduction and selective hitchhiking. RESULTS: Here we show that in advective environments such as oceans and rivers, the mean asymmetric transport of passively dispersed reproductive propagules will act to limit the effective population size in species with a drifting developmental stage. As advection increases, effective population size becomes decoupled from census size as the persistence of novel genetic lineages is restricted to those that arise in a small upstream portion of the species domain. CONCLUSION: This result leads to predictions about the maintenance of diversity in advective systems, and complements the "sweepstakes" hypothesis and other hypotheses proposed to explain cases of low allelic diversity in species with high fecundity. We describe the spatial extent of the species domain in which novel allelic diversity will be retained, thus determining how large an appropriately placed marine reserve must be to allow the persistence of endemic allelic diversity.


Asunto(s)
Flujo Genético , Variación Genética , Genética de Población , Modelos Genéticos , Alelos , Animales , Ambiente , Densidad de Población , Reproducción/genética
12.
Ecol Evol ; 6(13): 4403-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27386084

RESUMEN

Dispersal and adaptation are the two primary mechanisms that set the range distributions for a population or species. As such, understanding how these mechanisms interact in marine organisms in particular - with capacity for long-range dispersal and a poor understanding of what selective environments species are responding to - can provide useful insights for the exploration of biogeographic patterns. Previously, the barnacle Notochthamalus scabrosus has revealed two evolutionarily distinct lineages with a joint distribution that suggests an association with one of the two major biogeographic boundaries (~30°S) along the coast of Chile. However, spatial and genomic sampling of this system has been limited until now. We hypothesized that given the strong oceanographic and environmental shifts associated with the other major biogeographic boundary (~42°S) for Chilean coastal invertebrates, the southern mitochondrial lineage would dominate or go to fixation in locations further to the south. We also evaluated nuclear polymorphism data from 130 single nucleotide polymorphisms to evaluate the concordance of the signal from the nuclear genome with that of the mitochondrial sample. Through the application of standard population genetic approaches along with a Lagrangian ocean connectivity model, we describe the codistribution of these lineages through a simultaneous evaluation of coastal lineage frequencies, an approximation of larval behavior, and current-driven dispersal. Our results show that this pattern could not persist without the two lineages having distinct environmental optima. We suggest that a more thorough integration of larval dynamics, explicit dispersal models, and near-shore environmental analysis can explain much of the coastal biogeography of Chile.

13.
Sci Rep ; 5: 12436, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26227803

RESUMEN

Strategies for managing biological invasions are often based on the premise that characteristics of invading species and the invaded environment are key predictors of the invader's distribution. Yet, for either biological traits or environmental characteristics to explain distribution, adequate time must have elapsed for species to spread to all potential habitats. We compiled and analyzed a database of natural history and ecological traits of 138 coastal marine invertebrate species, the environmental conditions at sites to which they have been introduced, and their date of first introduction. We found that time since introduction explained the largest fraction (20%) of the variability in non-native range size, while traits of the species and environmental variables had significant, but minimal, influence on non-native range size. The positive relationship between time since introduction and range size indicates that non-native marine invertebrate species are not at equilibrium and are still spreading, posing a major challenge for management of coastal ecosystems.


Asunto(s)
Especies Introducidas , Invertebrados , Animales , Organismos Acuáticos , Australia , Bases de Datos Factuales , Ecosistema , Ambiente , Invertebrados/fisiología , Biología Marina , Nueva Zelanda , Navíos , Factores de Tiempo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA