Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 207(6): 740-756, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343281

RESUMEN

Rationale: Inflammation drives pulmonary arterial hypertension (PAH). Gut dysbiosis causes immune dysregulation and systemic inflammation by altering circulating microbial metabolites; however, little is known about gut dysbiosis and microbial metabolites in PAH. Objectives: To characterize the gut microbiome and microbial metabolites in patients with PAH. Methods: We performed 16S ribosomal RNA gene and shotgun metagenomics sequencing on stool from patients with PAH, family control subjects, and healthy control subjects. We measured markers of inflammation, gut permeability, and microbial metabolites in plasma from patients with PAH, family control subjects, and healthy control subjects. Measurements and Main Results: The gut microbiome was less diverse in patients with PAH. Shannon diversity index correlated with measures of pulmonary vascular disease but not with right ventricular function. Patients with PAH had a distinct gut microbial signature at the phylogenetic level, with fewer copies of gut microbial genes that produce antiinflammatory short-chain fatty acids (SCFAs) and secondary bile acids and lower relative abundances of species encoding these genes. Consistent with the gut microbial changes, patients with PAH had relatively lower plasma concentrations of SCFAs and secondary bile acids. Patients with PAH also had enrichment of species with the microbial genes that encoded the proinflammatory microbial metabolite trimethylamine. The changes in the gut microbiome and circulating microbial metabolites between patients with PAH and family control subjects were not as substantial as the differences between patients with PAH and healthy control subjects. Conclusions: Patients with PAH have proinflammatory gut dysbiosis, in which lower circulating SCFAs and secondary bile acids may facilitate pulmonary vascular disease. These findings support investigating modulation of the gut microbiome as a potential treatment for PAH.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión Arterial Pulmonar , Enfermedades Vasculares , Humanos , Microbioma Gastrointestinal/genética , Disbiosis , Filogenia , Hipertensión Pulmonar Primaria Familiar , Inflamación , Ácidos y Sales Biliares
2.
Am J Respir Crit Care Med ; 206(5): 608-624, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35699679

RESUMEN

Rationale: Pulmonary arterial hypertension (PAH) often results in death from right ventricular failure (RVF). NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3)-macrophage activation may promote RVF in PAH. Objectives: Evaluating the contribution of the NLRP3 inflammasome in RV macrophages to PAH RVF. Methods: Rats with decompensated RV hypertrophy (monocrotaline [MCT] and Sugen-5416 hypoxia [SuHx]) were compared with compensated RV hypertrophy rats (pulmonary artery banding). Echocardiography and right heart catheterization were performed. Macrophages, atrial natriuretic peptides, and fibrosis were evaluated by microscopy or flow cytometry. NLRP3 inflammasome activation and cardiotoxicity were confirmed by immunoblot and in vitro strategies. MCT rats were treated with SC-144 (a GP130 antagonist) or MCC950 (an NLRP3 inhibitor). Macrophage-NLRP3 activity was evaluated in patients with PAH RVF. Measurements and Main Results: Macrophages, fibrosis, and atrial natriuretic peptides were increased in MCT and SuHx RVs but not in left ventricles or pulmonary artery banding rats. Although MCT RV macrophages were inflammatory, lung macrophages were antiinflammatory. CCR2+ macrophages (monocyte-derived) were increased in MCT and SuHx RVs and highly expressed NLRP3. The macrophage-NLRP3 pathway was upregulated in patients with PAH with decompensated RVs. Cultured MCT monocytes showed NLRP3 activation, and in coculture experiments resulted in cardiomyocyte mitochondrial damage, which MCC950 prevented. In vivo, MCC950 reduced NLRP3 activation and regressed pulmonary vascular disease and RVF. SC-144 reduced RV macrophages and NLRP3 content, prevented STAT3 (signal transducer and activator of transcription 3) activation, and improved RV function without regressing pulmonary vascular disease. Conclusions: NLRP3-macrophage activation occurs in the decompensated RV in preclinical PAH models and patients with PAH. Inhibiting GP130 or NLRP3 signaling improves RV function. The concept that PAH RVF results from RV inflammation rather than solely from elevated RV afterload suggests a new therapeutic paradigm.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Animales , Factor Natriurético Atrial , Receptor gp130 de Citocinas , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar , Fibrosis , Ventrículos Cardíacos , Hipertrofia Ventricular Derecha/etiología , Inflamasomas , Activación de Macrófagos , Macrófagos/metabolismo , Monocrotalina , Proteína con Dominio Pirina 3 de la Familia NLR , Hipertensión Arterial Pulmonar/etiología , Ratas
3.
Catheter Cardiovasc Interv ; 97(4): E446-E453, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32738190

RESUMEN

Pulmonary hypertension (PH) is a heterogeneous group of diseases defined by a mean pulmonary arterial pressure greater than 20 mmHg. Clinically, PH is classified into five groups and the group of PH generally defines the cause of PH and the therapeutic options. Currently, medical therapies that target the prostacyclin, endothelin, and nitric oxide pathways are used in pulmonary arterial hypertension and chronic thromboembolic PH (CTEPH) patients. Moreover, surgery can improve outcomes in PH as pulmonary thromboendarterectomy can be curative for CTEPH and lung transplantation is used for end-stage PH. Despite these diverse treatment options, PH patients continue to have high symptom burden and poor long-term outcomes. However, advances in percutaneous technology are opening new avenues for the management of PH. In this review, we discuss the available data supporting the use of four interventional procedures: balloon atrial septostomy, transcatheter Potts shunt, balloon pulmonary angioplasty, and pulmonary artery denervation for the treatment of PH. These procedures provide hemodynamic and functional improvements in PH patients, but they come with their own unique risk profiles. Hopefully, these procedures will continue to be refined and thereby provide a venue for interventional cardiology to safely and effectively improve outcomes for PH moving forward.


Asunto(s)
Angioplastia de Balón , Cardiología , Hipertensión Pulmonar , Embolia Pulmonar , Enfermedad Crónica , Endarterectomía , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/terapia , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/cirugía , Resultado del Tratamiento
4.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019763

RESUMEN

The hexosamine biosynthetic pathway (HBP) converts glucose to uridine-diphosphate-N-acetylglucosamine, which, when added to serines or threonines, modulates protein function through protein O-GlcNAcylation. Glutamine-fructose-6-phosphate amidotransferase (GFAT) regulates HBP flux, and AMP-kinase phosphorylation of GFAT blunts GFAT activity and O-GlcNAcylation. While numerous studies demonstrate increased right ventricle (RV) glucose uptake in pulmonary arterial hypertension (PAH), the relationship between O-GlcNAcylation and RV function in PAH is unexplored. Therefore, we examined how colchicine-mediated AMP-kinase activation altered HBP intermediates, O-GlcNAcylation, mitochondrial function, and RV function in pulmonary artery-banded (PAB) and monocrotaline (MCT) rats. AMPK activation induced GFAT phosphorylation and reduced HBP intermediates and O-GlcNAcylation in MCT but not PAB rats. Reduced O-GlcNAcylation partially restored the RV metabolic signature and improved RV function in MCT rats. Proteomics revealed elevated expression of O-GlcNAcylated mitochondrial proteins in MCT RVs, which fractionation studies corroborated. Seahorse micropolarimetry analysis of H9c2 cardiomyocytes demonstrated colchicine improved mitochondrial function and reduced O-GlcNAcylation. Presence of diabetes in PAH, a condition of excess O-GlcNAcylation, reduced RV contractility when compared to nondiabetics. Furthermore, there was an inverse relationship between RV contractility and HgbA1C. Finally, RV biopsy specimens from PAH patients displayed increased O-GlcNAcylation. Thus, excess O-GlcNAcylation may contribute to metabolic derangements and RV dysfunction in PAH.


Asunto(s)
Diabetes Mellitus/metabolismo , Hipertrofia Ventricular Derecha/metabolismo , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , Disfunción Ventricular Derecha/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acilación , Adulto , Anciano , Animales , Línea Celular , Estudios de Cohortes , Colchicina/farmacología , Diabetes Mellitus/diagnóstico por imagen , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatología , Modelos Animales de Enfermedad , Ecocardiografía , Regulación de la Expresión Génica , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Hexosaminas/metabolismo , Humanos , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/fisiopatología , Masculino , Metaboloma , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , Monocrotalina/administración & dosificación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/fisiopatología
6.
Am J Physiol Heart Circ Physiol ; 315(6): H1544-H1552, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118340

RESUMEN

Cardiomyopathy is a significant contributor to morbidity and mortality in Duchenne muscular dystrophy (DMD). Membrane instability, leading to intracellular Ca2+ mishandling and overload, causes myocyte death and subsequent fibrosis in DMD cardiomyopathy. On a cellular level, cardiac myocytes from mdx mice have dysregulated Ca2+ handling, including increased resting Ca2+ and slow Ca2+ decay, especially evident under stress conditions. Sarco(endo)plasmic reticulum Ca2+ ATPase and its regulatory protein phospholamban (PLN) are potential therapeutic targets for DMD cardiomyopathy owing to their key role in regulating intracellular Ca2+ cycling. We tested the hypothesis that enhanced cardiac Ca2+ cycling would remediate cardiomyopathy caused by dystrophin deficiency. We used a genetic complementation model approach by crossing dystrophin-deficient mdx mice with PLN knockout (PLNKO) mice [termed double-knockout (DKO) mice]. As expected, adult cardiac myocytes isolated from DKO mice exhibited increased contractility and faster relaxation associated with increased Ca2+ transient peak height and faster Ca2+ decay rate compared with control mice. However, compared with wild-type, mdx, and PLNKO mice, DKO mice unexpectedly had reduced in vivo systolic and diastolic function as measured by echocardiography. Furthermore, Evans blue dye uptake was increased in DKO hearts compared with control, mdx, and PLNKO hearts, demonstrating increased membrane damage, which subsequently led to increased fibrosis in the DKO myocardium in vivo. In conclusion, despite enhanced intracellular Ca2+ handling at the myocyte level, DMD cardiomyopathy was exacerbated owing to unregulated chronic increases in Ca2+ cycling in DKO mice in vivo. These findings have potentially important implications for ongoing therapeutic strategies for the dystrophic heart. NEW & NOTEWORTHY This study examined the effects of phospholamban ablation on the pathophysiology of cardiomyopathy in dystrophin-deficient mice. In this setting, contractility and Ca2+ cycling were enhanced in isolated myocytes; however, in vivo heart function was diminished. Additionally, sarcolemmal integrity was compromised and fibrosis was increased. This is the first study, to our knowledge, examining unregulated Ca2+ cycling in the dystrophin-deficient heart. Results from this study have implications for potential therapies targeting Ca2+ handling in dystrophic cardiomyopathy. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/unregulated-ca2-cycling-exacerbates-dmd-cardiomyopathy/ .


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Calcio/metabolismo , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Células Cultivadas , Distrofina/genética , Femenino , Masculino , Ratones , Ratones Endogámicos mdx , Contracción Miocárdica , Sarcolema/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
7.
J Clin Outcomes Manag ; 22(10): 443-454, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27158218

RESUMEN

OBJECTIVE: To present a review of cardiorenal syndrome type 1 (CRS1). METHODS: Review of the literature. RESULTS: Acute kidney injury occurs in approximately one-third of patients with acute decompensated heart failure (ADHF) and the resultant condition was named CRS1. A growing body of literature shows CRS1 patients are at high risk for poor outcomes, and thus there is an urgent need to understand the pathophysiology and subsequently develop effective treatments. In this review we discuss prevalence, proposed pathophysiology including hemodynamic and nonhemodynamic factors, prognosticating variables, data for different treatment strategies, and ongoing clinical trials and highlight questions and problems physicians will face moving forward with this common and challenging condition. CONCLUSION: Further research is needed to understand the pathophysiology of this complex clinical entity and to develop effective treatments.

9.
J Heart Lung Transplant ; 43(2): 303-313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37783299

RESUMEN

BACKGROUND: Right ventricular failure (RVF) is a leading cause of morbidity and mortality in multiple cardiovascular diseases, but there are no treatments for RVF as therapeutic targets are not clearly defined. Contemporary transcriptomic/proteomic evaluations of RVF are predominately conducted in small animal studies, and data from large animal models are sparse. Moreover, a comparison of the molecular mediators of RVF across species is lacking. METHODS: Transcriptomics and proteomics analyses defined the pathways associated with cardiac magnetic resonance imaging (MRI)-derived values of RV hypertrophy, dilation, and dysfunction in control and pulmonary artery banded (PAB) pigs. Publicly available data from rat monocrotaline-induced RVF and pulmonary arterial hypertension patients with preserved or impaired RV function were used to compare molecular responses across species. RESULTS: PAB pigs displayed significant right ventricle/ventricular (RV) hypertrophy, dilation, and dysfunction as quantified by cardiac magnetic resonance imaging. Transcriptomic and proteomic analyses identified pathways associated with RV dysfunction and remodeling in PAB pigs. Surprisingly, disruptions in fatty acid oxidation (FAO) and electron transport chain (ETC) proteins were different across the 3 species. FAO and ETC proteins and transcripts were mostly downregulated in rats but were predominately upregulated in PAB pigs, which more closely matched the human response. All species exhibited similar dysregulation of the dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy pathways. CONCLUSIONS: The porcine metabolic molecular signature was more similar to human RVF than rodents. These data suggest there may be divergent molecular responses of RVF across species, and pigs may more accurately recapitulate metabolic aspects of human RVF.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Derecha , Humanos , Ratas , Animales , Porcinos , Multiómica , Proteómica , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/patología , Función Ventricular Derecha , Modelos Animales de Enfermedad , Remodelación Ventricular/fisiología
10.
J Cell Sci ; 124(Pt 6): 951-7, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325027

RESUMEN

Quadriceps myopathy (QM) is a rare form of muscle disease characterized by pathological changes predominately localized to the quadriceps. Although numerous inheritance patterns have been implicated in QM, several QM patients harbor deletions in dystrophin. Two defined deletions predicted loss of functional spectrin-like repeats 17 and 18. Spectrin-like repeat 17 participates in actin-filament binding, and thus we hypothesized that disruption of a dystrophin-cytoplasmic actin interaction might be one of the mechanisms underlying QM. To test this hypothesis, we generated mice deficient for ß(cyto)-actin in skeletal muscles (Actb-msKO). Actb-msKO mice presented with a progressive increase in the proportion of centrally nucleated fibers in the quadriceps, an approximately 50% decrease in dystrophin protein expression without alteration in transcript levels, deficits in repeated maximal treadmill tests, and heightened sensitivity to eccentric contractions. Collectively, these results suggest that perturbing a dystrophin-ß(cyto)-actin linkage decreases dystrophin stability, which results in a QM, and implicates ß(cyto)-actin as a possible candidate gene in QM pathology.


Asunto(s)
Actinas/metabolismo , Enfermedades Musculares/metabolismo , Músculo Cuádriceps/metabolismo , Actinas/genética , Animales , Distrofina/química , Distrofina/genética , Distrofina/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Musculares/genética , Unión Proteica , Estabilidad Proteica
11.
Pulm Circ ; 13(3): e12288, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37719340

RESUMEN

Group 3 pulmonary hypertension (PH) patients have disproportionate right ventricular dysfunction (RVD) compared to pulmonary arterial hypertension. We evaluated how sex and PH etiology modulated RVD. Strain echocardiography showed no intrasex differences between PH types. Heightened RVD in Group 3 PH may be due to a greater male proportion.

12.
bioRxiv ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36712076

RESUMEN

Background: Mitochondrial dysfunction, characterized by impaired lipid metabolism and heightened reactive oxygen species (ROS) generation, results in lipid peroxidation-induced ferroptosis. Ferroptosis is an inflammatory mode of cell death as it both promotes complement activation and recruits macrophages. In pulmonary arterial hypertension (PAH), pulmonary arterial endothelial cells exhibit disrupted lipid metabolism and increased ROS production, and there is ectopic complement deposition and inflammatory macrophage accrual in the surrounding vasculature. However, the integrative effects of ferroptosis on metabolism, cellular landscape changes in the lung, complement induction, and pulmonary vascular remodeling are unknown. Methods: Multi-omics analyses in rodents and a genetic association study in humans evaluated the role of ferroptosis in PAH. Results: Ferrostatin-1, a small-molecule ferroptosis inhibitor, mitigated PAH severity and improved right ventricular function in monocrotaline rats. RNA-seq and proteomics analyses demonstrated ferroptosis was induced with increasingly severe PAH. Metabolomics and proteomics data showed ferroptosis inhibition restructured lung metabolism and altered phosphatidylcholine and phosphatidylethanolamine levels. RNA-seq, proteomics, and confocal microscopy revealed complement activation and pro-inflammatory cytokines/chemokines were suppressed by ferrostatin-1. Additionally, ferrostatin-1 combatted changes in endothelial, smooth muscle, and interstitial macrophage abundances and gene activation patterns in the lungs as revealed by deconvolution RNA-seq. Finally, the presence of six single-nucleotide polymorphisms in ferroptosis genes were independently associated with pulmonary hypertension severity in the Vanderbilt BioVU repository. Conclusions: Rodent and human data nominate ferroptosis as a PAH regulating pathway via its ability to modulate lung lipid metabolism, repress pathogenic complement activation, dampen interstitial macrophage infiltration, and restore the lung cellular environment.

13.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798293

RESUMEN

Right ventricular dysfunction (RVD) is a risk factor for mortality in multiple cardiovascular diseases, but approaches to combat RVD are lacking. Therapies used for left heart failure are largely ineffective in RVD, and thus the identification of molecules that augment RV function could improve outcomes in a wide-array of cardiac limitations. Junctophilin-2 (JPH2) is an essential protein that plays important roles in cardiomyocytes, including calcium handling/maintenance of t-tubule structure and gene transcription. Additionally, JPH2 may regulate mitochondrial function as Jph2 knockout mice exhibit cardiomyocyte mitochondrial swelling and cristae derangements. Moreover, JPH2 knockdown in embryonic stem cell-derived cardiomyocytes induces downregulation of the mitochondrial protein mitofusin-2 (MFN2), which disrupts mitochondrial cristae structure and transmembrane potential. Impaired mitochondrial metabolism drives RVD, and here we evaluated the mitochondrial role of JPH2. We showed JPH2 directly interacts with MFN2, ablation of JPH2 suppresses mitochondrial biogenesis, oxidative capacity, and impairs lipid handling in iPSC-CM. Gene therapy with AAV9-JPH2 corrects RV mitochondrial morphological defects, mitochondrial fatty acid metabolism enzyme regulation, and restores the RV lipidomic signature in the monocrotaline rat model of RVD. Finally, AAV-JPH2 improves RV function without altering PAH severity, showing JPH2 provides an inotropic effect to the dysfunction RV.

14.
J Invasive Cardiol ; 35(6): E312-E320, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37410748

RESUMEN

INTRODUCTION: Chronic thromboembolic pulmonary hypertension (CTEPH) is a progressive and debilitating disorder that results from incomplete resolution of vascular obstructions resulting in pulmonary hypertension. Surgical pulmonary thromboendarterectomy (PTE) is the treatment of choice for CTEPH. Unfortunately, many CTEPH patients are ineligible for PTE or do not have access to an expert surgical center. Medical therapy imparts important symptomatic and exercise benefits for CTEPH patients, but it does not extend survival. Balloon pulmonary angioplasty (BPA) is an emerging transcatheter approach that is both safe and efficacious. However, the potential synergy between upfront BPA and medical therapy treatment approaches in patients with inoperable CTEPH is unknown. Here, we evaluated how the combination of BPA and medical therapy compared to medical therapy alone in a newly established BPA program. METHODS: Twenty-one patients with inoperable or residual CTEPH were evaluated in this single-center observational study. Ten patients underwent upfront BPA and medical therapy while 11 patients were treated with medical therapy alone. Hemodynamic and echocardiographic assessments were performed at baseline and at least 1 month after completion of therapy. Continuous variables were compared using t-test or Mann-Whitney U-test. Categorical variables were analyzed with Chi squared and Fisher's exact test where appropriate. RESULTS: Combination therapy significantly reduced mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR), but medical therapy only significantly lowered PVR. Comprehensive echocardiographic analysis revealed a more robust reverse right ventricular (RV) remodeling effect and augmentation of RV function with combination therapy. At the end of study, the combination therapy group had lower mPAP and PVR and better RV function. Importantly, there were no significant adverse effects in patients treated with BPA. CONCLUSION: Combination therapy significantly improves hemodynamics and RV function in inoperable CTEPH while carrying an acceptable risk profile, even in a newly developed program. Further studies comparing upfront combination therapy to medical therapy with larger, long-term, and randomized approaches should be considered.


Asunto(s)
Angioplastia de Balón , Hipertensión Pulmonar , Embolia Pulmonar , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/terapia , Embolia Pulmonar/complicaciones , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/terapia , Remodelación Ventricular , Hemodinámica , Angioplastia de Balón/métodos , Enfermedad Crónica , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/cirugía
15.
J Am Heart Assoc ; 12(6): e027559, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36892094

RESUMEN

Background Digoxin acutely increases cardiac output in patients with pulmonary arterial hypertension (PAH) and right ventricular failure; however, the effects of chronic digoxin use in PAH are unclear. Methods and Results Data from the Minnesota Pulmonary Hypertension Repository were used. The primary analysis used likelihood of digoxin prescription. The primary end point was a composite of all-cause mortality or heart failure (HF) hospitalization. Secondary end points included all-cause mortality, HF hospitalization, and transplant-free survival. Multivariable Cox proportional hazards analyses determined the hazard ratios (HR) and 95% CIs for the primary and secondary end points. Among 205 patients with PAH in the repository, 32.7% (n=67) were on digoxin. Digoxin was more often prescribed to patients with severe PAH and right ventricular failure. After propensity score-matching, 49 patients were digoxin users, and 70 patients were nonusers; of these 31 (63.3%) in the digoxin group and 41 (58.6%) in nondigoxin group met the primary end point during a median follow-up time of 2.1 (0.6-5.0) years. Digoxin users had a higher combined all-cause mortality or HF hospitalization (HR, 1.82 [95% CI, 1.11-2.99]), all-cause mortality (HR, 1.92 [95% CI, 1.06-3.49]), HF hospitalization (HR, 1.89 [95% CI, 1.07-3.35]), and worse transplant-free survival (HR, 2.00 [95% CI, 1.12-3.58]) even after adjusting for patient characteristics and severity of PAH and right ventricular failure. Conclusions In this retrospective, nonrandomized cohort, digoxin treatment was associated with greater all-cause mortality and HF hospitalization, even after multivariate correction. Future randomized controlled trials should assess the safety and efficacy of chronic digoxin use in PAH.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Digoxina/efectos adversos , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Estudios Retrospectivos , Hospitalización , Hipertensión Pulmonar Primaria Familiar , Hipertensión Pulmonar/tratamiento farmacológico , Resultado del Tratamiento
16.
Heliyon ; 9(11): e22227, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38058654

RESUMEN

Background: Ketone bodies are pleotropic metabolites that play important roles in multiple biological processes ranging from bioenergetics to inflammation regulation via suppression of the NLRP3 inflammasome, and epigenetic modifications. Ketone bodies are elevated in left ventricular failure (LVF) and multiple approaches that increase ketone concentrations exert advantageous cardiac effects in rodents and humans. However, the relationships between ketone bodies and right ventricular failure (RVF) are relatively unexplored. Methods: 51 PAH patients were dichotomized into preserved or impaired RV function based on a cardiac index of 2.2 L/min/m2. Impaired RV function patients were further segmented into intermediate or severe RV dysfunction based on a right atrial pressure of 8 mm Hg. Serum ketone bodies acetoacetate (AcAc) and beta-hydroxybutyrate (ßOHB) were quantified using ultra performance liquid chromatography and mass spectrometry. In rodent studies, male Sprague Dawley rats were assigned to three groups: control (saline injection), monocrotaline (MCT) standard chow diet (MCT-Standard), and MCT ketogenic diet (MCT-Keto). Immunoblots and confocal microscopy probed macrophage NLRP3 activation in RV extracts and sections. RV fibrosis was determined by Picrosirus Red. Echocardiography evaluated RV function. Pulmonary arteriole remodeling was assessed from histological specimens. Results: Human RVF patients lacked a compensatory ketosis as serum AcAc and ßOHB levels were not associated with hemodynamic, echocardiographic, or biochemical measures of RV dysfunction. In rodent studies, AcAc and ßOHB levels were also not elevated in MCT-mediated RVF, but the ketogenic diet significantly increased AcAc and ßOHB levels. MCT-Keto exhibited suppressed NLRP3 activation with a reduction in NLRP3, ASC (apoptosis-associated speck-like protein), pro-caspase-1, and interleukin-1 beta on immunoblots. Moreover, the number of ASC-positive macrophage in RV sections was reduced, RV fibrosis was blunted, and RV function was augmented in MCT-Keto rats. Conclusion: The ketogenic response is blunted in pulmonary arterial hypertension (PAH) patients with RVF. In the MCT rat model of PAH-mediated RVF, a dietary-induced ketosis improves RV function, suppresses NLRP3 inflammasome activation, and combats RV fibrosis. The summation of these data suggest ketogenic therapies may be particularly efficacious in RVF, and therefore future studies evaluating ketogenic interventions in human RVF are warranted.

17.
JACC Basic Transl Sci ; 8(3): 239-254, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37034280

RESUMEN

Intermittent fasting (IF) extends life span via pleotropic mechanisms, but one important molecular mediator is adenosine monophosphate-activated protein kinase (AMPK). AMPK enhances lipid metabolism and modulates microtubule dynamics. Dysregulation of these molecular pathways causes right ventricular (RV) failure in patients with pulmonary arterial hypertension. In rodent pulmonary arterial hypertension, IF activates RV AMPK, which restores mitochondrial and peroxisomal morphology and restructures mitochondrial and peroxisomal lipid metabolism protein regulation. In addition, IF increases electron transport chain protein abundance and activity in the right ventricle. Echocardiographic and hemodynamic measures of RV function are positively associated with fatty acid oxidation and electron transport chain protein levels. IF also combats heightened microtubule density, which normalizes transverse tubule structure.

18.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798212

RESUMEN

Right ventricular failure (RVF) is a leading cause of morbidity and mortality in multiple cardiovascular diseases, but there are no approved treatments for RVF as therapeutic targets are not clearly defined. Contemporary transcriptomic/proteomic evaluations of RVF are predominately conducted in small animal studies, and data from large animal models are sparse. Moreover, a comparison of the molecular mediators of RVF across species is lacking. Here, we used transcriptomics and proteomics analyses to define the molecular pathways associated with cardiac MRI-derived values of RV hypertrophy, dilation, and dysfunction in pulmonary artery banded (PAB) piglets. Publicly available data from rat monocrotaline-induced RVF and pulmonary arterial hypertension patients with preserved or impaired RV function were used to compare the three species. Transcriptomic and proteomic analyses identified multiple pathways that were associated with RV dysfunction and remodeling in PAB pigs. Surprisingly, disruptions in fatty acid oxidation (FAO) and electron transport chain (ETC) proteins were different across the three species. FAO and ETC proteins and transcripts were mostly downregulated in rats, but were predominately upregulated in PAB pigs, which more closely matched the human data. Thus, the pig PAB metabolic molecular signature was more similar to human RVF than rodents. These data suggest there may be divergent molecular responses of RVF across species, and that pigs more accurately recapitulate the metabolic aspects of human RVF.

19.
Pulm Circ ; 12(1): e12011, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35506094

RESUMEN

Pharmaceuticals for left ventricular (LV) dysfunction do not have similar success in right ventricular (RV) failure, which may reflect biological differences between the ventricles. In this study, we performed Ingenuity Pathway Analysis of the Human Cell Atlas to understand how the transcriptomic signatures of the RV and LV differ.

20.
Circ Heart Fail ; 15(1): e008574, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923829

RESUMEN

BACKGROUND: Right ventricular dysfunction (RVD) is the leading cause of death in pulmonary arterial hypertension (PAH), but no RV-specific therapy exists. We showed microtubule-mediated junctophilin-2 dysregulation (MT-JPH2 pathway) causes t-tubule disruption and RVD in rodent PAH, but the druggable regulators of this critical pathway are unknown. GP130 (glycoprotein 130) activation induces cardiomyocyte microtubule remodeling in vitro; however, the effects of GP130 signaling on the MT-JPH2 pathway and RVD resulting from PAH are undefined. METHODS: Immunoblots quantified protein abundance, quantitative proteomics defined RV microtubule-interacting proteins (MT-interactome), metabolomics evaluated the RV metabolic signature, and transmission electron microscopy assessed RV cardiomyocyte mitochondrial morphology in control, monocrotaline, and monocrotaline-SC-144 (GP130 antagonist) rats. Echocardiography and pressure-volume loops defined the effects of SC-144 on RV-pulmonary artery coupling in monocrotaline rats (8-16 rats per group). In 73 patients with PAH, the relationship between interleukin-6, a GP130 ligand, and RVD was evaluated. RESULTS: SC-144 decreased GP130 activation, which normalized MT-JPH2 protein expression and t-tubule structure in the monocrotaline RV. Proteomics analysis revealed SC-144 restored RV MT-interactome regulation. Ingenuity pathway analysis of dysregulated MT-interacting proteins identified a link between microtubules and mitochondrial function. Specifically, SC-144 prevented dysregulation of electron transport chain, Krebs cycle, and the fatty acid oxidation pathway proteins. Metabolomics profiling suggested SC-144 reduced glycolytic dependence, glutaminolysis induction, and enhanced fatty acid metabolism. Transmission electron microscopy and immunoblots indicated increased mitochondrial fission in the monocrotaline RV, which SC-144 mitigated. GP130 antagonism reduced RV hypertrophy and fibrosis and augmented RV-pulmonary artery coupling without altering PAH severity. In patients with PAH, higher interleukin-6 levels were associated with more severe RVD (RV fractional area change 23±12% versus 30±10%, P=0.002). CONCLUSIONS: GP130 antagonism reduces MT-JPH2 dysregulation, corrects metabolic derangements in the RV, and improves RVD in monocrotaline rats.


Asunto(s)
Receptor gp130 de Citocinas/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Proteínas de la Membrana/farmacología , Disfunción Ventricular Derecha/tratamiento farmacológico , Animales , Receptor gp130 de Citocinas/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/fisiopatología , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Ratas , Disfunción Ventricular Derecha/fisiopatología , Remodelación Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA