Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Health Serv Res ; 23(1): 1047, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777722

RESUMEN

BACKGROUND: e-Health has played a crucial role during the COVID-19 pandemic in primary health care. e-Health is the cost-effective and secure use of Information and Communication Technologies (ICTs) to support health and health-related fields. Various stakeholders worldwide use ICTs, including individuals, non-profit organizations, health practitioners, and governments. As a result of the COVID-19 pandemic, ICT has improved the quality of healthcare, the exchange of information, training of healthcare professionals and patients, and facilitated the relationship between patients and healthcare providers. This study systematically reviews the literature on ICT-based automatic and remote monitoring methods, as well as different ICT techniques used in the care of COVID-19-infected patients. OBJECTIVE: The purpose of this systematic literature review is to identify the e-Health methods, associated ICTs, method implementation strategies, information collection techniques, advantages, and disadvantages of remote and automatic patient monitoring and care in COVID-19 pandemic. METHODS: The search included primary studies that were published between January 2020 and June 2022 in scientific and electronic databases, such as EBSCOhost, Scopus, ACM, Nature, SpringerLink, IEEE Xplore, MEDLINE, Google Scholar, JMIR, Web of Science, Science Direct, and PubMed. In this review, the findings from the included publications are presented and elaborated according to the identified research questions. Evidence-based systematic reviews and meta-analyses were conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. Additionally, we improved the review process using the Rayyan tool and the Scale for the Assessment of Narrative Review Articles (SANRA). Among the eligibility criteria were methodological rigor, conceptual clarity, and useful implementation of ICTs in e-Health for remote and automatic monitoring of COVID-19 patients. RESULTS: Our initial search identified 664 potential studies; 102 were assessed for eligibility in the pre-final stage and 65 articles were used in the final review with the inclusion and exclusion criteria. The review identified the following eHealth methods-Telemedicine, Mobile Health (mHealth), and Telehealth. The associated ICTs are Wearable Body Sensors, Artificial Intelligence (AI) algorithms, Internet-of-Things, or Internet-of-Medical-Things (IoT or IoMT), Biometric Monitoring Technologies (BioMeTs), and Bluetooth-enabled (BLE) home health monitoring devices. Spatial or positional data, personal and individual health, and wellness data, including vital signs, symptoms, biomedical images and signals, and lifestyle data are examples of information that is managed by ICTs. Different AI and IoT methods have opened new possibilities for automatic and remote patient monitoring with associated advantages and weaknesses. Our findings were represented in a structured manner using a semantic knowledge graph (e.g., ontology model). CONCLUSIONS: Various e-Health methods, related remote monitoring technologies, different approaches, information categories, the adoption of ICT tools for an automatic remote patient monitoring (RPM), advantages and limitations of RMTs in the COVID-19 case are discussed in this review. The use of e-Health during the COVID-19 pandemic illustrates the constraints and possibilities of using ICTs. ICTs are not merely an external tool to achieve definite remote and automatic health monitoring goals; instead, they are embedded in contexts. Therefore, the importance of the mutual design process between ICT and society during the global health crisis has been observed from a social informatics perspective. A global health crisis can be observed as an information crisis (e.g., insufficient information, unreliable information, and inaccessible information); however, this review shows the influence of ICTs on COVID-19 patients' health monitoring and related information collection techniques.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Inteligencia Artificial , Atención a la Salud , Monitoreo Fisiológico
2.
BMC Med Inform Decis Mak ; 23(1): 278, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041041

RESUMEN

BACKGROUND: Automated coaches (eCoach) can help people lead a healthy lifestyle (e.g., reduction of sedentary bouts) with continuous health status monitoring and personalized recommendation generation with artificial intelligence (AI). Semantic ontology can play a crucial role in knowledge representation, data integration, and information retrieval. METHODS: This study proposes a semantic ontology model to annotate the AI predictions, forecasting outcomes, and personal preferences to conceptualize a personalized recommendation generation model with a hybrid approach. This study considers a mixed activity projection method that takes individual activity insights from the univariate time-series prediction and ensemble multi-class classification approaches. We have introduced a way to improve the prediction result with a residual error minimization (REM) technique and make it meaningful in recommendation presentation with a Naïve-based interval prediction approach. We have integrated the activity prediction results in an ontology for semantic interpretation. A SPARQL query protocol and RDF Query Language (SPARQL) have generated personalized recommendations in an understandable format. Moreover, we have evaluated the performance of the time-series prediction and classification models against standard metrics on both imbalanced and balanced public PMData and private MOX2-5 activity datasets. We have used Adaptive Synthetic (ADASYN) to generate synthetic data from the minority classes to avoid bias. The activity datasets were collected from healthy adults (n = 16 for public datasets; n = 15 for private datasets). The standard ensemble algorithms have been used to investigate the possibility of classifying daily physical activity levels into the following activity classes: sedentary (0), low active (1), active (2), highly active (3), and rigorous active (4). The daily step count, low physical activity (LPA), medium physical activity (MPA), and vigorous physical activity (VPA) serve as input for the classification models. Subsequently, we re-verify the classifiers on the private MOX2-5 dataset. The performance of the ontology has been assessed with reasoning and SPARQL query execution time. Additionally, we have verified our ontology for effective recommendation generation. RESULTS: We have tested several standard AI algorithms and selected the best-performing model with optimized configuration for our use case by empirical testing. We have found that the autoregression model with the REM method outperforms the autoregression model without the REM method for both datasets. Gradient Boost (GB) classifier outperforms other classifiers with a mean accuracy score of 98.00%, and 99.00% for imbalanced PMData and MOX2-5 datasets, respectively, and 98.30%, and 99.80% for balanced PMData and MOX2-5 datasets, respectively. Hermit reasoner performs better than other ontology reasoners under defined settings. Our proposed algorithm shows a direction to combine the AI prediction forecasting results in an ontology to generate personalized activity recommendations in eCoaching. CONCLUSION: The proposed method combining step-prediction, activity-level classification techniques, and personal preference information with semantic rules is an asset for generating personalized recommendations.


Asunto(s)
Inteligencia Artificial , Heurística , Humanos , Semántica , Algoritmos , Almacenamiento y Recuperación de la Información
3.
Haematologica ; 107(11): 2601-2616, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35546301

RESUMEN

The homeobox transcription factors HoxA9 and Meis1 are causally involved in the etiology of acute myeloid leukemia. While HoxA9 alone immortalizes cells, cooperation with Meis1 is necessary to induce a full leukemic phenotype. Here, we applied degron techniques to elucidate the leukemogenic contribution of Meis1. Chromatin immunoprecipitation experiments revealed that Meis1 localized mainly to H3K27 acetylated and H3K4 mono-methylated enhancers preactivated by HoxA9. Chromatin association of Meis1 required physical presence of HoxA9 and all Meis1 DNA interactions were rapidly lost after HoxA9 degradation. Meis1 controlled a gene expression pattern dominated by Myc, ribosome biogenesis and ribosomal RNA synthesis genes. While Myc accounted for the cell cycle stimulating effect of Meis1, overexpression of this oncogene alone did not accelerate leukemogenesis. Besides its effect on Myc, Meis1 induced transcription of ribosomal biogenesis genes. This was accompanied by an elevated resistance against inhibition of ribosomal RNA synthesis and translation, but without affecting steady-state protein synthesis. Finally, we demonstrate that HoxA9 and Meis1 proteins are stabilized by post-translational modification. Mutation of HoxA9/Meis1 phosphorylation sites or inhibition of casein kinase 2 lead to rapid protein degradation suggesting a potential pathway for pharmacological intervention.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas de Neoplasias , Carcinogénesis/genética , Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/genética , Leucemia Mieloide Aguda/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , ARN Ribosómico , Animales , Ratones
4.
BMC Health Serv Res ; 22(1): 1120, 2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36057715

RESUMEN

BACKGROUND: Regular physical activity (PA), healthy habits, and an appropriate diet are recommended guidelines to maintain a healthy lifestyle. A healthy lifestyle can help to avoid chronic diseases and long-term illnesses. A monitoring and automatic personalized lifestyle recommendation system (i.e., automatic electronic coach or eCoach) with considering clinical and ethical guidelines, individual health status, condition, and preferences may successfully help participants to follow recommendations to maintain a healthy lifestyle. As a prerequisite for the prototype design of such a helpful eCoach system, it is essential to involve the end-users and subject-matter experts throughout the iterative design process. METHODS: We used an iterative user-centered design (UCD) approach to understend context of use and to collect qualitative data to develop a roadmap for self-management with eCoaching. We involved researchers, non-technical and technical, health professionals, subject-matter experts, and potential end-users in design process. We designed and developed the eCoach prototype in two stages, adopting different phases of the iterative design process. In design workshop 1, we focused on identifying end-users, understanding the user's context, specifying user requirements, designing and developing an initial low-fidelity eCoach prototype. In design workshop 2, we focused on maturing the low-fidelity solution design and development for the visualization of continuous and discrete data, artificial intelligence (AI)-based interval forecasting, personalized recommendations, and activity goals. RESULTS: The iterative design process helped to develop a working prototype of eCoach system that meets end-user's requirements and expectations towards an effective recommendation visualization, considering diversity in culture, quality of life, and human values. The design provides an early version of the solution, consisting of wearable technology, a mobile app following the "Google Material Design" guidelines, and web content for self-monitoring, goal setting, and lifestyle recommendations in an engaging manner between the eCoach app and end-users. CONCLUSIONS: The adopted iterative design process brings in a design focus on the user and their needs at each phase. Throughout the design process, users have been involved at the heart of the design to create a working research prototype to improve the fit between technology, end-user, and researchers. Furthermore, we performed a technological readiness study of ProHealth eCoach against standard levels set by European Union (EU).


Asunto(s)
Aplicaciones Móviles , Inteligencia Artificial , Estilo de Vida Saludable , Humanos , Calidad de Vida , Diseño Centrado en el Usuario
5.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35270850

RESUMEN

In this study, we implemented an integrated security solution with Spring Security and Keycloak open-access platform (SSK) to secure data collection and exchange over microservice architecture application programming interfaces (APIs). The adopted solution implemented the following security features: open authorization, multi-factor authentication, identity brokering, and user management to safeguard microservice APIs. Then, we extended the security solution with a virtual private network (VPN), Blowfish and crypt (Bcrypt) hash, encryption method, API key, network firewall, and secure socket layer (SSL) to build up a digital infrastructure. To accomplish and describe the adopted SSK solution, we utilized a web engineering security method. As a case study, we designed and developed an electronic health coaching (eCoach) prototype system and hosted the system in the expanded digital secure infrastructure to collect and exchange personal health data over microservice APIs. We further described our adopted security solution's procedural, technical, and practical considerations. We validated our SSK solution implementation by theoretical evaluation and experimental testing. We have compared the test outcomes with related studies qualitatively to determine the efficacy of the hybrid security solution in digital infrastructure. The SSK implementation and configuration in the eCoach prototype system has effectively secured its microservice APIs from an attack in all the considered scenarios with 100% accuracy. The developed digital infrastructure with SSK solution efficiently sustained a load of (≈)300 concurrent users. In addition, we have performed a qualitative comparison among the following security solutions: Spring-based security, Keycloak-based security, and their combination (our utilized hybrid security solution), where SSK showed a promising outcome.


Asunto(s)
Seguridad Computacional , Programas Informáticos
6.
Sensors (Basel) ; 22(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35632165

RESUMEN

Heterogeneity is a problem in storing and exchanging data in a digital health information system (HIS) following semantic and structural integrity. The existing literature shows different methods to overcome this problem. Fast healthcare interoperable resources (FHIR) as a structural standard may explain other information models, (e.g., personal, physiological, and behavioral data from heterogeneous sources, such as activity sensors, questionnaires, and interviews) with semantic vocabularies, (e.g., Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT)) to connect personal health data to an electronic health record (EHR). We design and develop an intuitive health coaching (eCoach) smartphone application to prove the concept. We combine HL7 FHIR and SNOMED-CT vocabularies to exchange personal health data in JavaScript object notion (JSON). This study explores and analyzes our attempt to design and implement a structurally and logically compatible tethered personal health record (PHR) that allows bidirectional communication with an EHR. Our eCoach prototype implements most PHR-S FM functions as an interoperability quality standard. Its end-to-end (E2E) data are protected with a TSD (Services for Sensitive Data) security mechanism. We achieve 0% data loss and 0% unreliable performances during data transfer between PHR and EHR. Furthermore, this experimental study shows the effectiveness of FHIR modular resources toward flexible management of data components in the PHR (eCoach) prototype.


Asunto(s)
Registros de Salud Personal , Systematized Nomenclature of Medicine , Registros Electrónicos de Salud , Prueba de Estudio Conceptual , Semántica
7.
J Med Internet Res ; 23(11): e26931, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34787575

RESUMEN

BACKGROUND: Digital interventions have tremendous potential to improve well-being and health care conveyance by improving adequacy, proficiency, availability, and personalization. They have gained acknowledgment in interventions for the management of a healthy lifestyle. Therefore, we are reviewing existing conceptual frameworks, digital intervention approaches, and associated methods to identify the impact of digital intervention on adopting a healthier lifestyle. OBJECTIVE: This study aims to evaluate the impact of digital interventions on weight management in maintaining a healthy lifestyle (eg, regular physical activity, healthy habits, and proper dietary patterns). METHODS: We conducted a systematic literature review to search the scientific databases (Nature, SpringerLink, Elsevier, IEEE Xplore, and PubMed) that included digital interventions on healthy lifestyle, focusing on preventing obesity and being overweight as a prime objective. Peer-reviewed articles published between 2015 and 2020 were included. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and a framework for an evidence-based systematic review. Furthermore, we improved the review process by adopting the Rayyan tool and the Scale for the Assessment of Narrative Review Articles. RESULTS: Our initial searches identified 780 potential studies through electronic and manual searches; however, 107 articles in the final stage were cited following the specified inclusion and exclusion criteria. The identified methods for a successful digital intervention to promote a healthy lifestyle are self-monitoring, self-motivation, goal setting, personalized feedback, participant engagement, psychological empowerment, persuasion, digital literacy, efficacy, and credibility. In this study, we identified existing conceptual frameworks for digital interventions, different approaches to provide digital interventions, associated methods, and execution challenges and their impact on the promotion of healthy lifestyle management. CONCLUSIONS: This systematic literature review selected intervention principles (rules), theories, design features, ways to determine efficient interventions, and weaknesses in healthy lifestyle management from established digital intervention approaches. The results help us understand how digital interventions influence lifestyle management and overcome the existing shortcomings. It serves as a basis for further research with a focus on designing, developing, testing, and evaluating the generation of personalized lifestyle recommendations as a part of digital health interventions.


Asunto(s)
Estilo de Vida , Sobrepeso , Estilo de Vida Saludable , Humanos , Motivación , Obesidad/prevención & control
8.
J Med Internet Res ; 23(3): e23533, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33759793

RESUMEN

BACKGROUND: We systematically reviewed the literature on human coaching to identify different coaching processes as behavioral interventions and methods within those processes. We then reviewed how those identified coaching processes and the used methods can be utilized to improve an electronic coaching (eCoaching) process for the promotion of a healthy lifestyle with the support of information and communication technology (ICT). OBJECTIVE: This study aimed to identify coaching and eCoaching processes as behavioral interventions and the methods behind these processes. Here, we mainly looked at processes (and corresponding models that describe coaching as certain processes) and the methods that were used within the different processes. Several methods will be part of multiple processes. Certain processes (or the corresponding models) will be applicable for both human coaching and eCoaching. METHODS: We performed a systematic literature review to search the scientific databases EBSCOhost, Scopus, ACM, Nature, SpringerLink, IEEE Xplore, MDPI, Google Scholar, and PubMed for publications that included personal coaching (from 2000 to 2019) and persuasive eCoaching as behavioral interventions for a healthy lifestyle (from 2014 to 2019). The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework was used for the evidence-based systematic review and meta-analysis. RESULTS: The systematic search resulted in 79 publications, including 72 papers and seven books. Of these, 53 were related to behavioral interventions by eCoaching and the remaining 26 were related to human coaching. The most utilized persuasive eCoaching methods were personalization (n=19), interaction and cocreation (n=17), technology adoption for behavior change (n= 17), goal setting and evaluation (n=16), persuasion (n=15), automation (n=14), and lifestyle change (n=14). The most relevant methods for human coaching were behavior (n=23), methodology (n=10), psychology (n=9), and mentoring (n=6). Here, "n" signifies the total number of articles where the respective method was identified. In this study, we focused on different coaching methods to understand the psychology, behavioral science, coaching philosophy, and essential coaching processes for effective coaching. We have discussed how we can integrate the obtained knowledge into the eCoaching process for healthy lifestyle management using ICT. We identified that knowledge, coaching skills, observation, interaction, ethics, trust, efficacy study, coaching experience, pragmatism, intervention, goal setting, and evaluation of coaching processes are relevant for eCoaching. CONCLUSIONS: This systematic literature review selected processes, associated methods, strengths, and limitations for behavioral interventions from established coaching models. The identified methods of coaching point toward integrating human psychology in eCoaching to develop effective intervention plans for healthy lifestyle management and overcome the existing limitations of human coaching.


Asunto(s)
Terapia Conductista , Electrónica , Estilo de Vida , Tutoría , Comunicación , Humanos
9.
J Med Internet Res ; 23(4): e24656, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33835031

RESUMEN

BACKGROUND: Lifestyle diseases, because of adverse health behavior, are the foremost cause of death worldwide. An eCoach system may encourage individuals to lead a healthy lifestyle with early health risk prediction, personalized recommendation generation, and goal evaluation. Such an eCoach system needs to collect and transform distributed heterogenous health and wellness data into meaningful information to train an artificially intelligent health risk prediction model. However, it may produce a data compatibility dilemma. Our proposed eHealth ontology can increase interoperability between different heterogeneous networks, provide situation awareness, help in data integration, and discover inferred knowledge. This "proof-of-concept" study will help sensor, questionnaire, and interview data to be more organized for health risk prediction and personalized recommendation generation targeting obesity as a study case. OBJECTIVE: The aim of this study is to develop an OWL-based ontology (UiA eHealth Ontology/UiAeHo) model to annotate personal, physiological, behavioral, and contextual data from heterogeneous sources (sensor, questionnaire, and interview), followed by structuring and standardizing of diverse descriptions to generate meaningful, practical, personalized, and contextual lifestyle recommendations based on the defined rules. METHODS: We have developed a simulator to collect dummy personal, physiological, behavioral, and contextual data related to artificial participants involved in health monitoring. We have integrated the concepts of "Semantic Sensor Network Ontology" and "Systematized Nomenclature of Medicine-Clinical Terms" to develop our proposed eHealth ontology. The ontology has been created using Protégé (version 5.x). We have used the Java-based "Jena Framework" (version 3.16) for building a semantic web application that includes resource description framework (RDF) application programming interface (API), OWL API, native tuple store (tuple database), and the SPARQL (Simple Protocol and RDF Query Language) query engine. The logical and structural consistency of the proposed ontology has been evaluated with the "HermiT 1.4.3.x" ontology reasoner available in Protégé 5.x. RESULTS: The proposed ontology has been implemented for the study case "obesity." However, it can be extended further to other lifestyle diseases. "UiA eHealth Ontology" has been constructed using logical axioms, declaration axioms, classes, object properties, and data properties. The ontology can be visualized with "Owl Viz," and the formal representation has been used to infer a participant's health status using the "HermiT" reasoner. We have also developed a module for ontology verification that behaves like a rule-based decision support system to predict the probability for health risk, based on the evaluation of the results obtained from SPARQL queries. Furthermore, we discussed the potential lifestyle recommendation generation plan against adverse behavioral risks. CONCLUSIONS: This study has led to the creation of a meaningful, context-specific ontology to model massive, unintuitive, raw, unstructured observations for health and wellness data (eg, sensors, interviews, questionnaires) and to annotate them with semantic metadata to create a compact, intelligible abstraction for health risk predictions for individualized recommendation generation.


Asunto(s)
Semántica , Telemedicina , Bases de Datos Factuales , Estilo de Vida Saludable , Humanos , Prueba de Estudio Conceptual
10.
Sci Rep ; 14(1): 4634, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409365

RESUMEN

The widespread use of devices like mobile phones and wearables allows for automatic monitoring of human daily activities, generating vast datasets that offer insights into long-term human behavior. A structured and controlled data collection process is essential to unlock the full potential of this information. While wearable sensors for physical activity monitoring have gained significant traction in healthcare, sports science, and fitness applications, securing diverse and comprehensive datasets for research and algorithm development poses a notable challenge. In this proof-of-concept study, we underscore the significance of semantic representation in enhancing data interoperability and facilitating advanced analytics for physical activity sensor observations. Our approach focuses on enhancing the usability of physical activity datasets by employing a medical-grade (CE certified) sensor to generate synthetic datasets. Additionally, we provide insights into ethical considerations related to synthetic datasets. The study conducts a comparative analysis between real and synthetic activity datasets, assessing their effectiveness in mitigating model bias and promoting fairness in predictive analysis. We have created an ontology for semantically representing observations from physical activity sensors and conducted predictive analysis on data collected using MOX2-5 activity sensors. Until now, there has been a lack of publicly available datasets for physical activity collected with MOX2-5 activity monitoring medical grade (CE certified) device. The MOX2-5 captures and transmits high-resolution data, including activity intensity, weight-bearing, sedentary, standing, low, moderate, and vigorous physical activity, as well as steps per minute. Our dataset consists of physical activity data collected from 16 adults (Male: 12; Female: 4) over a period of 30-45 days (approximately 1.5 months), yielding a relatively small volume of 539 records. To address this limitation, we employ various synthetic data generation methods, such as Gaussian Capula (GC), Conditional Tabular General Adversarial Network (CTGAN), and Tabular General Adversarial Network (TABGAN), to augment the dataset with synthetic data. For both the authentic and synthetic datasets, we have developed a Multilayer Perceptron (MLP) classification model for accurately classifying daily physical activity levels. The findings underscore the effectiveness of semantic ontology in semantic search, knowledge representation, data integration, reasoning, and capturing meaningful relationships between data. The analysis supports the hypothesis that the efficiency of predictive models improves as the volume of additional synthetic training data increases. Ontology and Generative AI hold the potential to expedite advancements in behavioral monitoring research. The data presented, encompassing both real MOX2-5 and its synthetic counterpart, serves as a valuable resource for developing robust methods in activity type classification. Furthermore, it opens avenues for exploration into research directions related to synthetic data, including model efficiency, detection of generated data, and considerations regarding data privacy.


Asunto(s)
Ejercicio Físico , Semántica , Adulto , Masculino , Humanos , Femenino , Redes Neurales de la Computación , Algoritmos , Actividades Humanas
11.
Sci Rep ; 13(1): 10182, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349483

RESUMEN

Electronic coaching (eCoach) facilitates goal-focused development for individuals to optimize certain human behavior. However, the automatic generation of personalized recommendations in eCoaching remains a challenging task. This research paper introduces a novel approach that combines deep learning and semantic ontologies to generate hybrid and personalized recommendations by considering "Physical Activity" as a case study. To achieve this, we employ three methods: time-series forecasting, time-series physical activity level classification, and statistical metrics for data processing. Additionally, we utilize a naïve-based probabilistic interval prediction technique with the residual standard deviation used to make point predictions meaningful in the recommendation presentation. The processed results are integrated into activity datasets using an ontology called OntoeCoach, which facilitates semantic representation and reasoning. To generate personalized recommendations in an understandable format, we implement the SPARQL Protocol and RDF Query Language (SPARQL). We evaluate the performance of standard time-series forecasting algorithms [such as 1D Convolutional Neural Network Model (CNN1D), autoregression, Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU)] and classifiers [including Multilayer Perceptron (MLP), Rocket, MiniRocket, and MiniRocketVoting] using state-of-the-art metrics. We conduct evaluations on both public datasets (e.g., PMData) and private datasets (e.g., MOX2-5 activity). Our CNN1D model achieves the highest prediction accuracy of 97[Formula: see text], while the MLP model outperforms other classifiers with an accuracy of 74[Formula: see text]. Furthermore, we evaluate the performance of our proposed OntoeCoach ontology model by assessing reasoning and query execution time metrics. The results demonstrate that our approach effectively plans and generates recommendations on both datasets. The rule set of OntoeCoach can also be generalized to enhance interpretability.


Asunto(s)
Aprendizaje Profundo , Humanos , Redes Neurales de la Computación , Algoritmos , Predicción
12.
JMIR Med Inform ; 10(6): e33847, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35737439

RESUMEN

BACKGROUND: Automatic e-coaching may motivate individuals to lead a healthy lifestyle with early health risk prediction, personalized recommendation generation, and goal evaluation. Multiple studies have reported on uninterrupted and automatic monitoring of behavioral aspects (such as sedentary time, amount, and type of physical activity); however, e-coaching and personalized feedback techniques are still in a nascent stage. Current intelligent coaching strategies are mostly based on the handcrafted string messages that rarely individualize to each user's needs, context, and preferences. Therefore, more realistic, flexible, practical, sophisticated, and engaging strategies are needed to model personalized recommendations. OBJECTIVE: This study aims to design and develop an ontology to model personalized recommendation message intent, components (such as suggestion, feedback, argument, and follow-ups), and contents (such as spatial and temporal content and objects relevant to perform the recommended activities). A reasoning technique will help to discover implied knowledge from the proposed ontology. Furthermore, recommendation messages can be classified into different categories in the proposed ontology. METHODS: The ontology was created using Protégé (version 5.5.0) open-source software. We used the Java-based Jena Framework (version 3.16) to build a semantic web application as a proof of concept, which included Resource Description Framework application programming interface, World Wide Web Consortium Web Ontology Language application programming interface, native tuple database, and SPARQL Protocol and Resource Description Framework Query Language query engine. The HermiT (version 1.4.3.x) ontology reasoner available in Protégé 5.x implemented the logical and structural consistency of the proposed ontology. To verify the proposed ontology model, we simulated data for 8 test cases. The personalized recommendation messages were generated based on the processing of personal activity data in combination with contextual weather data and personal preference data. The developed ontology was processed using a query engine against a rule base to generate personalized recommendations. RESULTS: The proposed ontology was implemented in automatic activity coaching to generate and deliver meaningful, personalized lifestyle recommendations. The ontology can be visualized using OWLViz and OntoGraf. In addition, we developed an ontology verification module that behaves similar to a rule-based decision support system to analyze the generation and delivery of personalized recommendation messages following a logical structure. CONCLUSIONS: This study led to the creation of a meaningful ontology to generate and model personalized recommendation messages for physical activity coaching.

13.
Sci Rep ; 12(1): 19825, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400793

RESUMEN

Leading a sedentary lifestyle may cause numerous health problems. Therefore, passive lifestyle changes should be given priority to avoid severe long-term damage. Automatic health coaching system may help people manage a healthy lifestyle with continuous health state monitoring and personalized recommendation generation with machine learning (ML). This study proposes a semantic ontology model to annotate the ML-prediction outcomes and personal preferences to conceptualize personalized recommendation generation with a hybrid approach. We use a transfer learning approach to improve ML model training and its performance, and an incremental learning approach to handle daily growing data and fit them into the ML models. Furthermore, we propose a personalized activity recommendation algorithm for a healthy lifestyle by combining transfer learning, incremental learning, the proposed semantic ontology model, and personal preference data. For the overall experiment, we use public and private activity datasets collected from healthy adults (n = 33 for public datasets; n = 16 for private datasets). The standard ML algorithms have been used to investigate the possibility of classifying daily physical activity levels into the following activity classes: sedentary (0), low active (1), active (2), highly active (3), and rigorous active (4). The daily step count, low physical activity, medium physical activity, and vigorous physical activity serve as input for the classification models. We first use publicly available Fitbit datasets to build the initial classification models. Subsequently, we re-use the pre-trained ML classifiers on the real-time MOX2-5 dataset using transfer learning. We test several standard algorithms and select the best-performing model with optimized configuration for our use case by empirical testing. We find that DecisionTreeClassifier with a criterion "entropy" outperforms other ML classifiers with a mean accuracy score of 97.50% (F1 = 97.00, precision = 97.00, recall = 98.00, MCC = 96.78) and 96.10% (F1 = 96.00, precision = 96.00, recall = 96.00, MCC = 96.10) in Fitbit and MOX2-5 datasets, respectively. Using transfer learning, the DecisionTreeClassifier with a criterion "entropy" outperforms other classifiers with a mean accuracy score of 97.99% (F1 = 98.00, precision = 98.00, recall = 98.00, MCC = 96.79). Therefore, the transfer learning approach improves the machine learning model performance by ≈ 1.98% for defined datasets and settings on MOX2-5 datasets. The Hermit reasoner outperforms other reasoners with an average reasoning time of 1.1-2.1 s, under defined settings in our proposed ontology model. Our proposed algorithm for personalized recommendations conceptualizes a direction to combine the classification results and personal preferences in an ontology for activity eCoaching. The proposed method of combining machine learning technology with semantic rules is an invaluable asset in personalized recommendation generation. Moreover, the semantic rules in the knowledge base and SPARQL (SPARQL Protocol and RDF Query Language) query processing in the query engine helps to understand the logic behind the personalized recommendation generation.


Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Conducta Sedentaria , Ejercicio Físico , Semántica
14.
Nurse Educ Today ; 98: 104661, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33298327

RESUMEN

OBJECTIVES: To summarise and synthesise findings from qualitative primary research studies of nursing students' experiences from educational activities using manikins to gain a deeper understanding of the role these manikins play in the students' learning. DESIGN AND DATA SOURCES: A systematic review and thematic metasynthesis were conducted. Cinahl+, Ovid Medline, ERIC and Embase were searched systematically. REVIEW METHODS: Sandelowski and Barroso's framework guided the review process. A comprehensive search to identify qualitative studies of nursing students' experiences from learning with manikins was performed in January 2019 and updated in April 2020. Study selection was guided by six screening questions derived from these inclusion criteria: qualitative primary studies, published from 2008, in English or Scandinavian, presenting findings of undergraduate nursing students' experiences with manikins at all fidelity levels. Thomas and Harden's method for thematic synthesis was followed. RESULTS: Twenty-eight articles of twenty-seven studies were included. We identified three synthesised analytic themes: Seeing the manikin as a doll or a patient, Experiencing yourself as a nurse caring for a patient, and Being a team member. CONCLUSIONS: When it is perceived as a patient, a manikin can give students a realistic experience of what it means to behave like nurses. Consequently, this realism lets students practice and acquire relational, communicative, and collaborative nursing skills. Using a manikin can facilitate the development of students' professional identity.


Asunto(s)
Bachillerato en Enfermería , Estudiantes de Enfermería , Competencia Clínica , Humanos , Aprendizaje , Maniquíes
15.
Stud Health Technol Inform ; 257: 418-423, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30741233

RESUMEN

The transformation and digitalization of health services foresees a need for recruiting individuals with the combined knowledge of technical and health sciences. Education of young people in the domain of eHealth is an important contribution in the on-going digital transformation process. In this context, the research project High School Students as Co-researchers in eHealth aims to introduce technology-supported health care scenarios and research methods to young students in the Southern region of Norway. As a part of the project, simulation of eHealth scenarios was made in a clinical research laboratory together with high school students and experienced researchers. In the simulation, role-play was used to carry out the scenarios. To inform the roles, the tasks and their associated actions, an interactive smartphone application was used. This paper presents the simulation procedure and how the interactive smartphone was developed and used to guide the scenarios.


Asunto(s)
Atención a la Salud , Teléfono Inteligente , Telemedicina , Adolescente , Humanos , Noruega , Estudiantes
16.
Z Med Phys ; 29(1): 16-21, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29866506

RESUMEN

This study reviews the development of Swept-Source interferometers and compares systematically three different Swept-Source interferometer designs for biometric measurements of the eye. Principles characteristics, conveniences and accessibilities of the three developed systems are presented. The main difference between the three Swept-Source systems is the method of tuning the wavelength at the broadband optical amplifier. The implementation of a "quasi-phase-continuous method" (QPC) for wavelength tuning led to longer measuring depth but was more time-consuming. The wavelength tuning using a rotating polygon mirror scanner was faster. The wavelength tuning via Fourier Domain Mode Locking (FDML), where the tuning frequency ft of the filter must be matched to the inverse cavity roundtrip time τ, achieved the widest tuning range combined with a rather better resolution and signal to noise ratio (SNR). The swept sources were compared using a fiber-optic based Michelson interferometer setup. Measurements of a self-made human model eye demonstrate excellent capturing of the biometric data, with all interfaces of eye optical components and their contours being clearly detected.


Asunto(s)
Biometría/instrumentación , Ojo/anatomía & histología , Interferometría/instrumentación , Biometría/métodos , Ojo/diagnóstico por imagen , Humanos , Interferometría/métodos , Dispersión de Radiación , Tomografía de Coherencia Óptica
18.
Blood Adv ; 2(22): 3137-3148, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30463913

RESUMEN

Ectopic expression of the oncogenic transcription factor HoxA9 is a major cause of acute myeloid leukemia (AML). Here, we demonstrate that HoxA9 is a specific substrate of granule proteases. Protease knockout allowed the comprehensive determination of genome-wide HoxA9 binding sites by chromatin immunoprecipitation sequencing in primary murine cells and a human AML cell line. The kinetics of enhancer activity and transcription rates in response to alterations of an inducible HoxA9 were determined. This permitted identification of HoxA9-controlled enhancers and promoters, allocation to their respective transcription units, and discrimination against HoxA9-bound, but unresponsive, elements. HoxA9 triggered an elaborate positive-feedback loop that drove expression of the complete Hox-A locus. In addition, it controlled key oncogenic transcription factors Myc and Myb and directly induced the cell cycle regulators Cdk6 and CyclinD1, as well as telomerase, drawing the essential blueprint for perturbation of proliferation by leukemogenic HoxA9 expression.


Asunto(s)
Puntos de Control del Ciclo Celular , Quinasa 6 Dependiente de la Ciclina/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular Tumoral , Quinasa 6 Dependiente de la Ciclina/genética , Elementos de Facilitación Genéticos , Edición Génica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Células Mieloides/citología , Células Mieloides/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myc/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA