Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Neurochem Res ; 48(6): 1783-1797, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36695984

RESUMEN

Failure of the immune system to discriminate myelin components from foreign antigens plays a critical role in the pathophysiology of multiple sclerosis. In fact, the appearance of anti-myelin autoantibodies, targeting both proteins and glycolipids, is often responsible for functional alterations in myelin-producing cells in this disease. Nevertheless, some of these antibodies were reported to be beneficial for remyelination. Recombinant human IgM22 (rHIgM22) binds to myelin and to the surface of O4-positive oligodendrocytes, and promotes remyelination in mouse models of chronic demyelination. Interestingly, the identity of the antigen recognized by this antibody remains to be elucidated. The preferential binding of rHIgM22 to sulfatide-positive cells or tissues suggests that sulfatide might be part of the antigen pattern recognized by the antibody, however, cell populations lacking sulfatide expression are also responsive to rHIgM22. Thus, we assessed the binding of rHIgM22 in vitro to purified lipids and lipid extracts from various sources to identify the antigen(s) recognized by this antibody. Our results show that rHIgM22 is indeed able to bind both sulfatide and its deacylated form, whereas no significant binding for other myelin sphingolipids has been detected. Remarkably, binding of rHIgM22 to sulfatide in lipid monolayers can be positively or negatively regulated by the presence of other lipids. Moreover, rHIgM22 also binds to phosphatidylinositol, phosphatidylserine and phosphatidic acid, suggesting that not only sulfatide, but also other membrane lipids might play a role in the binding of rHIgM22 to oligodendrocytes and to other cell types not expressing sulfatide.


Asunto(s)
Remielinización , Animales , Humanos , Ratones , Inmunoglobulina M , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Lípidos/inmunología
2.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012705

RESUMEN

Globoid cell leukodystrophy (GLD), or Krabbe disease, is a neurodegenerative sphingolipidosis caused by genetic deficiency of lysosomal ß-galactosylceramidase (GALC), characterized by neuroinflammation and demyelination of the central (CNS) and peripheral nervous system. The acute phase protein long pentraxin-3 (PTX3) is a soluble pattern recognition receptor and a regulator of innate immunity. Growing evidence points to the involvement of PTX3 in neurodegeneration. However, the expression and role of PTX3 in the neurodegenerative/neuroinflammatory processes that characterize GLD remain unexplored. Here, immunohistochemical analysis of brain samples from Krabbe patients showed that macrophages and globoid cells are intensely immunoreactive for PTX3. Accordingly, Ptx3 expression increases throughout the course of the disease in the cerebrum, cerebellum, and spinal cord of GALC-deficient twitcher (Galctwi/twi) mice, an authentic animal model of GLD. This was paralleled by the upregulation of proinflammatory genes and M1-polarized macrophage/microglia markers and of the levels of PTX3 protein in CNS and plasma of twitcher animals. Crossing of Galctwi/twi mice with transgenic PTX3 overexpressing animals (hPTX3 mice) demonstrated that constitutive PTX3 overexpression reduced the severity of clinical signs and the upregulation of proinflammatory genes in the spinal cord of P35 hPTX3/Galctwi/twi mice when compared to Galctwi/twi littermates, leading to a limited increase of their life span. However, this occurred in the absence of a significant impact on the histopathological findings and on the accumulation of the neurotoxic metabolite psychosine when evaluated at this late time point of the disease. In conclusion, our results provide the first evidence that PTX3 is produced in the CNS of GALC-deficient Krabbe patients and twitcher mice. PTX3 may exert a protective role by reducing the neuroinflammatory response that occurs in the spinal cord of GALC-deficient animals.


Asunto(s)
Proteína C-Reactiva , Galactosilceramidasa , Leucodistrofia de Células Globoides , Proteínas del Tejido Nervioso , Animales , Proteína C-Reactiva/genética , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Galactosilceramidasa/deficiencia , Galactosilceramidasa/genética , Humanos , Leucodistrofia de Células Globoides/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Psicosina , Regulación hacia Arriba
3.
Mol Genet Metab ; 133(3): 297-306, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34119419

RESUMEN

Gangliosidoses are inherited lysosomal storage disorders caused by reduced or absent activity of either a lysosomal enzyme involved in ganglioside catabolism, or an activator protein required for the proper activity of a ganglioside hydrolase, which results in the intra-lysosomal accumulation of undegraded metabolites. We hereby describe morphological, ultrastructural, biochemical and genetic features of GM2 gangliosidosis in three captive bred wild boar littermates. The piglets were kept in a partially-free range farm and presented progressive neurological signs, starting at 6 months of age. Animals were euthanized at approximately one year of age due to their poor conditions. Neuropathogens were excluded as a possible cause of the signs. Gross examination showed a reduction of cerebral and cerebellar consistency. Central (CNS) and peripheral (PNS) nervous system neurons were enlarged and foamy, with severe and diffuse cytoplasmic vacuolization. Transmission electron microscopy (TEM) of CNS neurons demonstrated numerous lysosomes, filled by parallel or concentric layers of membranous electron-dense material, defined as membranous cytoplasmic bodies (MCB). Biochemical composition of gangliosides analysis from CNS revealed accumulation of GM2 ganglioside; furthermore, Hex A enzyme activity was less than 1% compared to control animals. These data confirmed the diagnosis of GM2 gangliosidosis. Genetic analysis identified, at a homozygous level, the presence of a missense nucleotide variant c.1495C > T (p Arg499Cys) in the hexosaminidase subunit alpha gene (HEXA), located within the GH20 hexosaminidase superfamily domain of the encoded protein. This specific HEXA variant is known to be pathogenic and associated with Tay-Sachs disease in humans, but has never been identified in other animal species. This is the first report of a HEXA gene associated Tay-Sachs disease in wild boars and provides a comprehensive description of a novel spontaneous animal model for this lysosomal storage disease.


Asunto(s)
Variación Genética , Hexosaminidasa A/genética , Mutación Missense , Sus scrofa/genética , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/fisiopatología , Animales , Cerebelo/patología , Modelos Animales de Enfermedad , Femenino , Gangliosidosis GM2/metabolismo , Hexosaminidasa A/metabolismo , Masculino , Enfermedad de Tay-Sachs/patología , Secuenciación Completa del Genoma
4.
J Lipid Res ; 61(5): 636-654, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31871065

RESUMEN

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.


Asunto(s)
Envejecimiento/fisiología , Microdominios de Membrana/metabolismo , Enfermedades Neurodegenerativas/patología , Envejecimiento/metabolismo , Humanos , Sistema Nervioso/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología
5.
Glycoconj J ; 37(3): 329-343, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32198666

RESUMEN

It has been recently reported by our group that GM1-oligosaccharide added to neuroblastoma cells or administered to mouse experimental model mimics the neurotrophic and neuroprotective properties of GM1 ganglioside. In addition to this, differently from GM1, GM1-oligosaccharide is not taken up by the cells, remaining solubilized into the extracellular environment interacting with cell surface proteins. Those characteristics make GM1-oligosaccharide a good tool to study the properties of the endogenous GM1, avoiding to interfere with the ganglioside natural metabolic pathway. In this study, we show that GM1-oligosaccharide administered to mice cerebellar granule neurons by interacting with cell surface induces TrkA-MAP kinase pathway activation enhancing neuron clustering, arborization and networking. Accordingly, in the presence of GM1-oligosaccharide, neurons show a higher phosphorylation rate of FAK and Src proteins, the intracellular key regulators of neuronal motility. Moreover, treated cells express increased level of specific neuronal markers, suggesting an advanced stage of maturation compared to controls. In parallel, we found that in the presence of GM1-oligosaccharide, neurons accelerate the expression of complex gangliosides and reduce the level of the simplest ones, displaying the typical ganglioside pattern of mature neurons. Our data confirms the specific role of GM1 in neuronal differentiation and maturation, determined by its oligosaccharide portion. GM1-oligosacchairide interaction with cell surface receptors triggers the activation of intracellular biochemical pathways responsible for neuronal migration, dendrites emission and axon growth.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Gangliósido G(M1)/farmacología , Gangliósidos/metabolismo , Neuronas/efectos de los fármacos , Animales , Diferenciación Celular/fisiología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Femenino , Gangliósido G(M1)/análisis , Gangliósido G(M1)/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptor trkA/metabolismo
6.
Neurochem Res ; 44(6): 1460-1474, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30569280

RESUMEN

Remyelination promoting human IgMs effectively increase the number of myelinated axons in animal models of multiple sclerosis. Hence, they ultimately stimulate myelin production by oligodendrocytes (OLs); however, their exact mechanism of action remains to be elucidated, and in particular, it remains unclear whether they are directly targeting OLs, or their action is mediated by effects on other cell types. We assessed the effect of remyelination promoting antibody rHIgM22 on the proliferative response and on the ceramide/sphingosine 1-phosphate rheostat in mixed glial cell cultures (MGCs). rHIgM22 treatment caused a time-dependent increase in PDGFαR protein in MGCs. Forty-eight hours of treatment with rHIgM22 induced a dose-dependent proliferative response (evaluated as total cell number and as EdU(+) cell number) in MGCs. When the proliferation response of MGCs to rHIgM22 was analyzed as a function of the cell types, the most significant proliferative response was associated with GLAST(+) cells, i.e., astrocytes. In many cell types, the balance between different sphingolipid mediators (the "sphingolipid rheostat"), in particular ceramide and sphingosine 1-phosphate, is critical in determining the cell fate. rHIgM22 treatment in MGCs induced a moderate but significant inhibition of total acidic sphingomyelinase activity (measured in vitro on cell lysates), the main enzyme responsible for the stimulus-mediated production of ceramide, when treatment was performed in serum containing medium, but no significant differences were observed when antibody treatment was performed in the absence of serum. Moreover, rHIgM22 treatment, either in the presence or in absence of serum, had no effects on ceramide levels. On the other hand, rHIgM22 treatment for 24 h induced increased production and release of sphingosine 1-phosphate in the extracellular milieu of MGC. Release of sphingosine 1-phosphate upon rHIgM22 treatment was strongly reduced by a selective inhibitor of PDGFαR. Increased sphingosine 1-phosphate production does not seem to be mediated by regulation of the biosynthetic enzymes, sphingosine kinase 1 and 2, since protein levels of these enzymes and phosphorylation of sphingosine kinase 1 were unchanged upon rHIgM22 treatment. Instead, we observed a significant reduction in the levels of sphingosine 1-phosphate lyase 1, one of the key catabolic enzymes. Remarkably, rHIgM22 treatment under the same experimental conditions did not induce changes in the production and/or release of sphingosine 1-phosphate in pure astrocyte cultures. Taken together, these data suggest that rHIgM22 indirectly influences the proliferation of astrocytes in MGCs, by affecting the ceramide/sphingosine 1-phosphate balance. The specific cell population directly targeted by rHIgM22 remains to be identified, however our study unveils another aspect of the complexity of rHIgM22-induced remyelinating effect.


Asunto(s)
Astrocitos/metabolismo , Proliferación Celular/fisiología , Inmunoglobulina M/inmunología , Vaina de Mielina/metabolismo , Remielinización/efectos de los fármacos , Esfingolípidos/metabolismo , Animales , Ceramidas/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Ratas Sprague-Dawley , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Recombinantes/inmunología , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Regulación hacia Arriba/efectos de los fármacos
7.
Biochim Biophys Acta ; 1851(8): 1006-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25677824

RESUMEN

The brain is characterized by the presence of cell types with very different functional specialization, but with the common trait of a very high complexity of structures originated by their plasma membranes. Brain cells bear evident membrane polarization with the creation of different morphological and functional subcompartments, whose formation, stabilization and function require a very high level of lateral order within the membrane. In other words, the membrane specialization of brain cells implies the presence of distinct membrane domains. The brain is the organ with the highest enrichment in lipids like cholesterol, glycosphingolipids, and the most recently discovered brain membrane lipid, phosphatidylglucoside, whose collective behavior strongly favors segregation within the membrane leading to the formation of lipid-driven membrane domains. Lipid-driven membrane domains function as dynamic platforms for signal transduction, protein processing, and membrane turnover. Essential events involved in the development and in the maintenance of the functional integrity of the brain depend on the organization of lipid-driven membrane domains, and alterations in lipid homeostasis, leading to deranged lipid-driven membrane organization, are common in several major brain diseases. In this review, we summarize the forces behind the formation of lipid membrane domains and their biological roles in different brain cells. This article is part of a Special Issue entitled Brain Lipids.


Asunto(s)
Encefalopatías Metabólicas/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Glicerofosfolípidos/metabolismo , Glicoesfingolípidos/metabolismo , Microdominios de Membrana/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Encéfalo/citología , Química Encefálica , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/patología , Colesterol/química , Glicerofosfolípidos/química , Glicoesfingolípidos/química , Humanos , Microdominios de Membrana/química , Vaina de Mielina/química , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transmisión Sináptica
8.
Neurochem Res ; 41(1-2): 130-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26542149

RESUMEN

Sulfatide (3-O-sulfogalactosylceramide, SM4s) was isolated by Thudichum from the human brain in 1884. Together with galactosylceramide, its direct metabolic precursor in the biosynthetic pathway, sulfatide is highly enriched in myelin in the central and peripheral nervous system, and it has been implicated in several aspects of the biology of myelin-forming cells. Studies obtained using galactolipid-deficient mice strongly support the notion that sulfatide plays critical roles in the correct structure and function of myelin membrane. A number of papers are suggesting that these roles are mediated by a specific function of sulfatide in the lateral organization of myelin membrane, thus affecting the sorting, lateral assembly, membrane dynamics and also the function of specific myelin proteins in different substructures of the myelin sheath. The consequences of altered sulfatide metabolism and sulfatide-mediated myelin organization with respect to myelin diseases are still poorly understood, but it's very likely that sulfatide might represent not only a critical player in the pathogenesis of several diseases, including multiple sclerosis and Alzheimer's disease, but also a potentially promising therapeutic target.


Asunto(s)
Vaina de Mielina/metabolismo , Sulfoglicoesfingolípidos/farmacología , Animales , Anticuerpos/inmunología , Humanos , Ratones , Sulfoglicoesfingolípidos/inmunología
9.
Biomedicines ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37238977

RESUMEN

Past evidence has shown that the exogenous administration of GM1 ganglioside slowed neuronal death in preclinical models of Parkinson's disease, a neurodegenerative disorder characterized by the progressive loss of dopamine-producing neurons: however, the physical and chemical properties of GM1 (i.e., amphiphilicity) limited its clinical application, as the crossing of the blood-brain barrier is denied. Recently, we demonstrated that the GM1 oligosaccharide head group (GM1-OS) is the GM1 bioactive portion that, interacting with the TrkA-NGF complex at the membrane surface, promotes the activation of a multivariate network of intracellular events regulating neuronal differentiation, protection, and reparation. Here, we evaluated the GM1-OS neuroprotective potential against the Parkinson's disease-linked neurotoxin MPTP, which destroys dopaminergic neurons by affecting mitochondrial bioenergetics and causing ROS overproduction. In dopaminergic and glutamatergic primary cultures, GM1-OS administration significantly increased neuronal survival, preserved neurite network, and reduced mitochondrial ROS production enhancing the mTOR/Akt/GSK3ß pathway. These data highlight the neuroprotective efficacy of GM1-OS in parkinsonian models through the implementation of mitochondrial function and reduction in oxidative stress.

10.
J Biol Chem ; 286(47): 40900-10, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21949119

RESUMEN

The genetic (stable overexpression of sialyltransferase I, GM3 synthase) or pharmacological (selective pressure by N-(4-hydroxyphenyl)retinamide)) manipulation of A2780 human ovarian cancer cells allowed us to obtain clones characterized by higher GM3 synthase activity compared with wild-type cells. Clones with high GM3 synthase expression had elevated ganglioside levels, reduced in vitro cell motility, and enhanced expression of the membrane adaptor protein caveolin-1 with respect to wild-type cells. In high GM3 synthase-expressing clones, both depletion of gangliosides by treatment with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and silencing of caveolin-1 by siRNA were able to strongly increase in vitro cell motility. The motility of wild-type, low GM3 synthase-expressing cells was reduced in the presence of a Src inhibitor, and treatment of these cells with exogenous gangliosides, able to reduce their in vitro motility, inactivated c-Src kinase. Conversely, ganglioside depletion by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol treatment or caveolin-1 silencing in high GM3 synthase-expressing cells led to c-Src kinase activation. In high GM3 synthase-expressing cells, caveolin-1 was associated with sphingolipids, integrin receptor subunits, p130(CAS), and c-Src forming a Triton X-100-insoluble noncaveolar signaling complex. These data suggest a role for gangliosides in regulating tumor cell motility by affecting the function of a signaling complex organized by caveolin-1, responsible for Src inactivation downstream to integrin receptors, and imply that GM3 synthase is a key target for the regulation of cell motility in human ovarian carcinoma.


Asunto(s)
Caveolina 1/metabolismo , Movimiento Celular , Gangliósidos/metabolismo , Neoplasias Ováricas/patología , Transducción de Señal , Proteína Tirosina Quinasa CSK , Caveolina 1/deficiencia , Caveolina 1/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/farmacología , Femenino , Silenciador del Gen , Glucosiltransferasas/antagonistas & inhibidores , Humanos , Integrinas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Sialiltransferasas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Microambiente Tumoral/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Familia-src Quinasas
11.
J Mol Neurosci ; 72(7): 1482-1499, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35727525

RESUMEN

Niemann-Pick type A disease (NPA) is a rare lysosomal storage disorder caused by mutations in the gene coding for the lysosomal enzyme acid sphingomyelinase (ASM). ASM deficiency leads to the consequent accumulation of its uncatabolized substrate, the sphingolipid sphingomyelin (SM), causing severe progressive brain disease. To study the effect of the aberrant lysosomal accumulation of SM on cell homeostasis, we loaded skin fibroblasts derived from a NPA patient with exogenous SM to mimic the levels of accumulation characteristic of the pathological neurons. In SM-loaded NPA fibroblasts, we found the blockage of the autophagy flux and the impairment of the mitochondrial compartment paralleled by the altered transcription of several genes, mainly belonging to the electron transport chain machinery and to the cholesterol biosynthesis pathway. In addition, SM loading induces the nuclear translocation of the transcription factor EB that promotes the lysosomal biogenesis and exocytosis. Interestingly, we obtained similar biochemical findings in the brain of the NPA mouse model lacking ASM (ASMKO mouse) at the neurodegenerative stage. Our work provides a new in vitro model to study NPA etiopathology and suggests the existence of a pathogenic lysosome-plasma membrane axis that with an impairment in the mitochondrial activity is responsible for the cell death.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedades de Niemann-Pick , Animales , Apoptosis , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedad de Niemann-Pick Tipo A/genética , Enfermedad de Niemann-Pick Tipo A/patología , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología , Esfingomielinas/metabolismo , Esfingomielinas/farmacología
12.
Cells ; 11(15)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35954187

RESUMEN

ß-glucocerebrosidase is a lysosomal hydrolase involved in the catabolism of the sphingolipid glucosylceramide. Biallelic loss of function mutations in this enzyme are responsible for the onset of Gaucher disease, while monoallelic ß-glucocerebrosidase mutations represent the first genetic risk factor for Parkinson's disease. Despite this evidence, the molecular mechanism linking the impairment in ß-glucocerebrosidase activity with the onset of neurodegeneration in still unknown. In this frame, we developed two in vitro neuronal models of ß-glucocerebrosidase deficiency, represented by mouse cerebellar granule neurons and human-induced pluripotent stem cells-derived dopaminergic neurons treated with the specific ß-glucocerebrosidase inhibitor conduritol B epoxide. Neurons deficient for ß-glucocerebrosidase activity showed a lysosomal accumulation of glucosylceramide and the onset of neuronal damage. Moreover, we found that neurons react to the lysosomal impairment by the induction of their biogenesis and exocytosis. This latter event was responsible for glucosylceramide accumulation also at the plasma membrane level, with an alteration in lipid and protein composition of specific signaling microdomains. Collectively, our data suggest that ß-glucocerebrosidase loss of function impairs the lysosomal compartment, establishing a lysosome-plasma membrane axis responsible for modifications in the plasma membrane architecture and possible alterations of intracellular signaling pathways, leading to neuronal damage.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Animales , Membrana Celular/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Glucosilceramidas , Humanos , Lisosomas/metabolismo , Ratones
13.
J Biol Chem ; 285(24): 18594-602, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20404323

RESUMEN

A2780 human ovarian carcinoma cells respond to treatment with the synthetic retinoid N-(4-hydroxyphenyl)retinamide (HPR) with the production of dihydroceramide and with a concomitant reduction of cell proliferation and induction of apoptosis. The derived HPR-resistant clonal cell line, A2780/HPR, is less responsive to HPR in terms of dihydroceramide generation. In this report, we show that the production of sphingosine 1-phosphate (S1P) is significantly higher in A2780/HPR versus A2780 cells due to an increased sphingosine kinase (SK) activity and SK-1 mRNA and protein levels. Treatment of A2780 and A2780/HPR cells with a potent and highly selective pharmacological SK inhibitor effectively reduced S1P production and resulted in a marked reduction of cell proliferation. Moreover, A2780/HPR cells treated with a SK inhibitor were sensitized to the cytotoxic effect of HPR, due to an increased dihydroceramide production. On the other hand, the ectopic expression of SK-1 in A2780 cells was sufficient to induce HPR resistance in these cells. Challenge of A2780 and A2780/HPR cells with agonists and antagonists of S1P receptors had no effects on their sensitivity to the drug, suggesting that the role of SK in HPR resistance in these cells is not mediated by the S1P receptors. These data clearly demonstrate a role for SK in determining resistance to HPR in ovarian carcinoma cells, due to its effect in the regulation of intracellular ceramide/S1P ratio, which is critical in the control of cell death and proliferation.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Fenretinida/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Femenino , Humanos , Lípidos/química , Espectrometría de Masas/métodos , Modelos Biológicos , ARN Mensajero/metabolismo
14.
Neurochem Res ; 36(9): 1654-68, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21207141

RESUMEN

In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal membrane sphingolipid patterns and altered plasma membrane organization. In this paper, we review the potential importance of these alterations to the pathogenesis of these diseases and focus the reader's attention on some secondary alterations of sphingolipid metabolism that have been sporadically reported in the literature. Moreover, we present a detailed analysis of the lipid composition of different central nervous system and extraneural tissues from the acid sphingomyelinase-deficient mouse, the animal model for Niemann-Pick disease type A, characterized by the accumulation of sphingomyelin. Our data show an unexpected, tissue specific selection of the accumulated molecular species of sphingomyelin, and an accumulation of GM3 and GM2 gangliosides in both neural and extraneural tissues, that cannot be solely explained by the lack of acid sphingomyelinase.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Esfingolípidos/metabolismo , Animales , Gangliósidos/metabolismo , Glicosiltransferasas/metabolismo , Metabolismo de los Lípidos , Enfermedades por Almacenamiento Lisosomal/patología , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Enfermedades Neurodegenerativas/patología , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología , Distribución Tisular
15.
Methods Mol Biol ; 2187: 1-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32770498

RESUMEN

Lipid rafts are membrane areas characterized by the clustering of selected membrane lipids, as the result of their phase separation forming a liquid-ordered phase floating in the lipid-disordered bulk membrane. van Meer and Simons hypothesized the existence of lipid rafts to explain the differential composition of the apical and basolateral domains of polarized epithelial cells and proposed that association of given proteins with lipid rafts along the traffic route might represent an important mechanism for protein sorting. However, great attention was paid to the lipid raft theory after Simons and Ikonen highlighted the enrichment of several proteins involved in signal transduction in "detergent-insoluble, glycolipid-enriched complexes," and postulated that lipid rafts might serve as hubs in regulating intracellular signaling. Most notably, the feature of detergent-insolubility was incorporated in the definition of lipid rafts used in 1997 by these authors. "Lipid rafts" and "detergent-resistant membranes" became almost synonymous after the publication, in 1992, of the seminal paper by Brown and Rose, describing the separation of a low-density, Triton X-100-insoluble fraction from epithelial cells, enriched in GSL and apical GPI-anchored proteins and depleted of basolateral membrane marker proteins. This paper provided a working definition of lipid rafts and a putative biochemical method for their separation. More than 2000 papers have been published using "the Triton method." Evidences obtained by the use of alternative biochemical methods for the isolation of lipid rafts and of methods enabling to analyze the dynamics of lipid rafts in intact cells highlighted the several limitations of the Triton X-100 method. On the other hand, the main findings obtained by this method have not been confuted, and the method is still widely used.In this chapter, we will discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, with a special focus on neural cells and tissues.


Asunto(s)
Lípidos de la Membrana/química , Microdominios de Membrana/química , Neuronas/química , Animales , Biomarcadores/química , Bovinos , Membrana Celular/química , Detergentes/química , Células Epiteliales/química , Ratones , Octoxinol/química , Transporte de Proteínas/fisiología , Ratas , Transducción de Señal/fisiología , Solubilidad
16.
Cell Signal ; 80: 109929, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33493577

RESUMEN

Spontaneous segregation of cholesterol and sphingolipids as a liquid-ordered phase leads to their clustering in selected membrane areas, the lipid rafts. These specialized membrane domains enriched in gangliosides, sphingomyelin, cholesterol and selected proteins involved in signal transduction, organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating cell homeostasis. Sphingosine 1-phosphate, an important biologically active mediator, is involved in several signal transduction processes regulating a plethora of cell functions and, not only several of its downstream effectors tend to localize in lipid rafts, some of the enzymes involved in its pathway, of receptors involved in its signalling and its transporters have been often found in these membrane microdomains. Considering this, in this review we address what is currently known regarding the relationship between sphingosine 1-phosphate metabolism and signalling and plasma membrane lipid rafts.


Asunto(s)
Lisofosfolípidos/metabolismo , Microdominios de Membrana/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Aldehído-Liasas/metabolismo , Caveolina 1/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptor Cross-Talk , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
17.
J Lipid Res ; 51(4): 798-808, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19820263

RESUMEN

Human fibroblasts from normal subjects and Niemann-Pick A (NPA) disease patients were fed with two labeled metabolic precursors of sphingomyelin (SM), [(3)H]choline and photoactivable sphingosine, that entered into the biosynthetic pathway allowing the synthesis of radioactive phosphatidylcholine and SM, and of radioactive and photoactivable SM ([(3)H]SM-N(3)). Detergent resistant membrane (DRM) fractions prepared from normal and NPA fibroblasts resulted as highly enriched in [(3)H]SM-N(3). However, lipid and protein analysis showed strong differences between the two cell types. After cross-linking, different patterns of SM-protein complexes were found, mainly associated with the detergent soluble fraction of the gradient containing most cell proteins. After cell surface biotinylation, DRMs were immunoprecipitated using streptavidin. In conditions that maintain the integrity of domain, SM-protein complexes were detectable only in normal fibroblasts, whereas disrupting the membrane organization, these complexes were not recovered in the immunoprecipitate, suggesting that they involve proteins belonging to the inner membrane layer. These data suggest that differences in lipid and protein compositions of these cell lines determine specific lipid-protein interactions and different clustering within plasma membrane. In addition, our experiments show that photoactivable sphingolipids metabolically synthesized in cells can be used to study sphingolipid protein environments and sphingolipid-protein interactions.


Asunto(s)
Membrana Celular/metabolismo , Microdominios de Membrana/metabolismo , Esfingomielinas/biosíntesis , Esfingomielinas/metabolismo , Esfingosina/análogos & derivados , Biotinilación , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Niño , Reactivos de Enlaces Cruzados , Humanos , Inmunoprecipitación , Lípidos/análisis , Proteínas de la Membrana/metabolismo , Enfermedad de Niemann-Pick Tipo A/metabolismo , Fosfatidilcolinas/biosíntesis , Procesos Fotoquímicos , Piel/citología , Esfingosina/efectos adversos , Esfingosina/síntesis química , Esfingosina/metabolismo , Estreptavidina , Factores de Tiempo
18.
Glycobiology ; 20(1): 62-77, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19759399

RESUMEN

In this paper, we describe the effects of the expression of GM3 synthase at high levels in human ovarian carcinoma cells. Overexpression of GM3 synthase in A2780 cells consistently resulted in elevated ganglioside (GM3, GM2 and GD1a) levels. GM3 synthase overexpressing cells had a growth rate similar to wild-type cells, but showed a strongly reduced in vitro cell motility accompanied by reduced levels of the epithelial-mesenchymal transition marker alpha smooth muscle actin. A similar reduction in cell motility was observed upon treatment with exogenous GM3, GM2, and GM1, but not with GD1a. A photolabeling experiment using radioactive and photoactivable GM3 highlighted several proteins directly interacting with GM3. Among those, caveolin-1 was identified as a GM3-interacting protein in GM3 synthase overexpressing cells. Remarkably, caveolin-1 was markedly upregulated in GM3 synthase overexpressing cells. In addition, the motility of low GM3 synthase expressing cells was also reduced in the presence of a Src kinase inhibitor; on the other hand, higher levels of the inactive form of c-Src were detected in GM3 synthase overexpressing cells, associated with a ganglioside- and caveolin-rich detergent insoluble fraction.


Asunto(s)
Carcinoma/enzimología , Caveolina 1/biosíntesis , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/enzimología , Sialiltransferasas/biosíntesis , Actinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Cartilla de ADN/química , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Esfingolípidos/química , Familia-src Quinasas/metabolismo
19.
Biochim Biophys Acta ; 1780(3): 585-96, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17889439

RESUMEN

Aberrant (glyco)sphingolipid expression deeply affects several properties of tumor cells that are involved in tumor progression and metastasis formation: cell adhesion (to the extracellular matrix or to the endothelium of blood vessels), motility, recognition and invasion of host tissues. In particular, (glyco)sphingolipids might contribute to the modulation of integrin-dependent interactions of tumor cells (determining their adhesion, motility and invasiveness) with the extracellular matrix as well as with host cells present in the stromal compartment of the tumor. A model based on solid experimental evidence has been proposed: (glyco)sphingolipids at the cell surface interact with plasma membrane receptors (e.g., integrin receptors and growth factor receptors) and adapter molecules (including tetraspanins) forming signaling complexes that are able to influence the activity of signal transduction molecules oriented at the cytosolic surface of the plasma membrane (mainly the Src kinases pathway members). The function of these signaling complexes appears to be strictly dependent on their (glyco)sphingolipid composition, and likely on specific sphingolipid-protein interactions. From this point of view, particularly intriguing is the connection between (glyco)sphingolipids and caveolin-1, a membrane protein that plays multiple roles as a suppressor of tumor growth and metastasis in ovarian, breast and colon human carcinomas.


Asunto(s)
Caveolina 1/metabolismo , Membrana Celular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Esfingolípidos/metabolismo , Humanos , Fenotipo
20.
J Neurochem ; 109(1): 105-15, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19187445

RESUMEN

Niemann-Pick disease (NPD) type A is a neurodegenerative disorder caused by sphingomyelin (SM) accumulation in lysosomes relying on reduced or absent acid sphingomyelinase (ASM) activity. NPD-A patients develop progressive neurodegeneration including cerebral and cerebellar atrophy, relevant Purkinje cell and myelin deficiency with death within 3 years. ASM'knock-out' (ASMKO) mice, an animal model of NPD-A, develop a phenotype largely mimicking that of NPD-A. The mechanisms underlying myelin formation are poorly documented in ASMKO mice. In this study we determined the content of four myelin-specific proteins, myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin associated glycoprotein (MAG) and proteolipid protein (PLP), and that of myelin-enriched sphingolipids in the brains of ASMKO and wild-type mice in early stages of post-natal (pn) life. Protein and mRNA analysis revealed that in ASMKO mice beginning from 4 post-natal weeks (wk-pn), the expression levels of MAG, CNP, and MBP were below those observed in wild-type mice and the same applied to PLP at 10 wk-pn. Moreover, at 4 wk-pn the expression of SOX10, one of the transcription factors involved in oligodendrocyte development and maintenance was lower in ASMKO mice. Lipid analysis showed that SM and the gangliosides GM3 and GM2 accumulated in the brains of ASMKO mice, as opposed to galactocerebroside and galactosulfocerebroside that, in parallel with the mRNAs of UDP-galactose ceramide galactosyltransferase and galactose-3-O-sulfotransferase 1, the two transferases involved in their synthesis, decreased. Myelin lipid analysis showed a progressive sphingomyelin accumulation in ASMKO mice; noteworthy, of the two sphingomyelin species known to be resolved by TLC, only that with the lower Rf accumulated. The immunohistochemical analysis showed that the reduced expression of myelin specific proteins in ASMKO mice at 10 wk-pn was not restricted to the Purkinje layer of the cerebellar cortex but involved the cerebral cortex as well. In conclusion, reduced oligodendrocyte metabolic activity is likely to be the chief cause of myelin deficiency in ASMKO mice, thus shedding light on the molecular dysfunctions underlying neurodegeneration in NPD-A.


Asunto(s)
Encéfalo/metabolismo , Proteínas de la Mielina/metabolismo , Enfermedad de Niemann-Pick Tipo A/metabolismo , Factores de Transcripción SOXE/deficiencia , Esfingolípidos/metabolismo , Esfingomielina Fosfodiesterasa/deficiencia , Animales , Encéfalo/enzimología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Proteínas de la Mielina/genética , Enfermedad de Niemann-Pick Tipo A/genética , Factores de Transcripción SOXE/biosíntesis , Factores de Transcripción SOXE/genética , Esfingolípidos/genética , Esfingomielina Fosfodiesterasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA