Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 51(8): 4086-4099, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36987855

RESUMEN

Prokaryotic Argonautes (pAgos) are programmable nucleases involved in cell defense against invading DNA. In vitro, pAgos can bind small single-stranded guide DNAs to recognize and cleave complementary DNA. In vivo, pAgos preferentially target plasmids, phages and multicopy genetic elements. Here, we show that CbAgo nuclease from Clostridium butyricum can be used for genomic DNA engineering in bacteria. We demonstrate that CbAgo loaded with plasmid-derived guide DNAs can recognize and cleave homologous chromosomal loci, and define the minimal length of homology required for this targeting. Cleavage of plasmid DNA at an engineered site of the I-SceI meganuclease increases guide DNA loading into CbAgo and enhances processing of homologous chromosomal loci. Analysis of guide DNA loading into CbAgo also reveals off-target sites of I-SceI in the Escherichia coli genome, demonstrating that pAgos can be used for highly sensitive detection of double-stranded breaks in genomic DNA. Finally, we show that CbAgo-dependent targeting of genomic loci with plasmid-derived guide DNAs promotes homologous recombination between plasmid and chromosomal DNA, depending on the catalytic activity of CbAgo. Specific targeting of plasmids with Argonautes can be used to integrate plasmid-encoded sequences into the chromosome thus enabling genome editing.


Asunto(s)
ADN , Edición Génica , Plásmidos/genética , ADN/metabolismo , Bacterias/genética , ADN de Cadena Simple , Endonucleasas/metabolismo
2.
Nucleic Acids Res ; 51(10): 5106-5124, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37094066

RESUMEN

Prokaryotic Argonaute proteins (pAgos) are homologs of eukaryotic Argonautes (eAgos) and are also thought to play a role in cell defense against invaders. However, pAgos are much more diverse than eAgos and little is known about their functional activities and target specificities in vivo. Here, we describe five pAgos from mesophilic bacteria that act as programmable DNA endonucleases and analyze their ability to target chromosomal and invader DNA. In vitro, the analyzed proteins use small guide DNAs for precise cleavage of single-stranded DNA at a wide range of temperatures. Upon their expression in Escherichia coli, all five pAgos are loaded with small DNAs preferentially produced from plasmids and chromosomal regions of replication termination. One of the tested pAgos, EmaAgo from Exiguobacterium marinum, can induce DNA interference between homologous sequences resulting in targeted processing of multicopy plasmid and genomic elements. EmaAgo also protects bacteria from bacteriophage infection, by loading phage-derived guide DNAs and decreasing phage DNA content and phage titers. Thus, the ability of pAgos to target multicopy elements may be crucial for their protective function. The wide spectrum of pAgo activities suggests that they may have diverse functions in vivo and paves the way for their use in biotechnology.


Asunto(s)
Proteínas Argonautas , Bacterias , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bacterias/genética , ADN/metabolismo , Células Procariotas/metabolismo , Plásmidos/genética , Eucariontes/genética , Endonucleasas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
3.
Nucleic Acids Res ; 50(11): 6398-6413, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35657103

RESUMEN

The X family polymerases (PolXs) are specialized DNA polymerases that are found in all domains of life. While the main representatives of eukaryotic PolXs, which have dedicated functions in DNA repair, were studied in much detail, the functions and diversity of prokaryotic PolXs have remained largely unexplored. Here, by combining a comprehensive bioinformatic analysis of prokaryotic PolXs and biochemical experiments involving selected recombinant enzymes, we reveal a previously unrecognized group of PolXs that seem to be lacking DNA polymerase activity. The noncanonical PolXs contain substitutions of the key catalytic residues and deletions in their polymerase and dNTP binding sites in the palm and fingers domains, but contain functional nuclease domains, similar to canonical PolXs. We demonstrate that representative noncanonical PolXs from the Deinococcus genus are indeed inactive as DNA polymerases but are highly efficient as 3'-5' exonucleases. We show that both canonical and noncanonical PolXs are often encoded together with the components of the non-homologous end joining pathway and may therefore participate in double-strand break repair, suggesting an evolutionary conservation of this PolX function. This is a remarkable example of polymerases that have lost their main polymerase activity, but retain accessory functions in DNA processing and repair.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Exonucleasas , Células Procariotas/enzimología , Secuencia de Aminoácidos , ADN/metabolismo , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Exonucleasas/genética
4.
RNA Biol ; 12(12): 1338-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26488412

RESUMEN

Since replication of RNA-viruses is generally a low-fidelity process, it would be advantageous, if specific interactions of their genomic cis-elements with dedicated ligands are relatively tolerant to mutations. The specificity/promiscuity trade-off of such interactions was addressed here by investigating structural requirements of the oriL (also known as the clover leaf-like element), of poliovirus RNA, a replicative cis-element containing a conserved essential tetraloop functionally interacting with the viral protein 3CD. The sequence of this tetraloop and 2 adjacent base-pairs was randomized in the viral genome, and viable viruses were selected in susceptible cells. Strikingly, each position of this octanucleotide in 62 investigated viable viruses could be occupied by any nucleotide (with the exception of one position, which lacked U), though with certain sequence preferences, confirmed by engineering mutant viral genomes whose phenotypic properties were found to correlate with the strength of the cis-element/ligand interaction. The results were compatible with a hypothesis that functional recognition by 3CD requires that this tetraloop should stably or temporarily adopt a YNMG-like (Y=U/C, N=any nucleotide, M=A/C) fold. The fitness of "weak" viruses could be increased by compensatory mutations "improving" the tetraloops. Otherwise, the recognition of "bad" tetraloops might be facilitated by alterations in the 3CD protein. The virus appeared to tolerate mutations in its cis-element relaying on either robustness (spatial structure degeneracy) or resilience (a combination of dynamic RNA folding, low-fidelity replication modifying the cis-element or its ligand, and negative selection). These mechanisms (especially resilience involving metastable low-fit intermediates) can also contribute to the viral evolvability.


Asunto(s)
Mutación/genética , Virus ARN/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Replicación Viral/genética , Emparejamiento Base/genética , Secuencia de Bases , Ingeniería Genética , Genoma Viral , Datos de Secuencia Molecular , Nucleótidos/genética , Fenotipo , Plásmidos/genética , Virus ARN/patogenicidad , ARN Viral/genética , Técnica SELEX de Producción de Aptámeros , Transcripción Genética
5.
Nat Microbiol ; 9(5): 1368-1381, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622379

RESUMEN

Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action. Here we investigate short pAgos associated with a putative effector nuclease, NbaAgo from Novosphingopyxis baekryungensis and CmeAgo from Cupriavidus metallidurans. We show that these pAgos form a heterodimeric complex with co-encoded effector nucleases (short prokaryotic Argonaute, DNase and RNase associated (SPARDA)). RNA-guided target DNA recognition unleashes the nuclease activity of SPARDA leading to indiscriminate collateral cleavage of DNA and RNA. Activation of SPARDA by plasmids or phages results in degradation of cellular DNA and cell death or dormancy, conferring target-specific population protection and expanding the range of known prokaryotic immune systems.


Asunto(s)
Proteínas Argonautas , Proteínas Bacterianas , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas/química , Plásmidos/genética , Plásmidos/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , ADN/metabolismo , ADN/genética
6.
Biochimie ; 206: 81-88, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36252889

RESUMEN

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12. Structural mapping of these mutations suggests that some of them may affect the interactions of nsp12 with its cofactors nsp7/nsp8 as well as with RNA substrates. We have obtained several mutations of these types and demonstrated that some of them decrease specific activity of RdRp in vitro, possibly by changing RdRp assembly and/or its interactions with RNA. Therefore, natural polymorphisms in RdRp may potentially affect viral replication. Furthermore, we have synthesized a series of polyphenol and diketoacid derivatives based on previously studied inhibitors of hepatitis C virus RdRp and found that several of them can inhibit SARS-CoV-2 RdRp. Tested mutations in RdRp do not have strong effects on the efficiency of inhibition. Further development of more efficient non-nucleoside inhibitors of SARS-CoV-2 RdRp should take into account the existence of multiple polymorphic variants of RdRp.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , COVID-19/genética , Proteínas no Estructurales Virales/química , Antivirales/química
7.
Biochimie ; 170: 57-64, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31883957

RESUMEN

Bacteriophage-encoded transcription antiterminators play essential roles in the regulation of gene expression during infection. Here, we characterize the effects of the antiterminator protein P7 of bacteriophage Xp10 on transcriptional pausing by Xanthomonas oryzae RNA polymerase (RNAP) at different types of pause-inducing signals. When acting alone, P7 inhibits only hairpin-stabilized pauses, likely by preventing hairpin formation. In the presence of NusA, P7 also suppresses backtracking-stabilized pauses and the his elemental pause, but not the consensus elemental pause, suggesting that these pause signals may be mechanistically different. Thus, P7 and other bacteriophage proteins that bind near the RNA exit channel of RNAP have evolved to regulate transcription by suppressing RNAP pausing at a subset of regulatory signals, and to co-opt NusA in doing so.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Bacteriano/genética , Transcripción Genética , Proteínas Virales/metabolismo , Xanthomonas/enzimología , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Bacteriano/metabolismo , Proteínas Virales/genética
8.
Viruses ; 12(9)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883046

RESUMEN

Significantly divergent polioviruses (VDPV) derived from the oral poliovirus vaccine (OPV) from Sabin strains, like wild polioviruses, are capable of prolonged transmission and neuropathology. This is mainly shown for VDPV type 2. Here we describe a molecular-epidemiological investigation of a case of VDPV type 3 circulation leading to paralytic poliomyelitis in a child in an orphanage, where OPV has not been used. Samples of feces and blood serum from the patient and 52 contacts from the same orphanage were collected twice and investigated. The complete genome sequencing was performed for five polioviruses isolated from the patient and three contact children. The level of divergence of the genomes of the isolates corresponded to approximately 9-10 months of evolution. The presence of 61 common substitutions in all isolates indicated a common intermediate progenitor. The possibility of VDPV3 transmission from the excretor to susceptible recipients (unvaccinated against polio or vaccinated with inactivated poliovirus vaccine, IPV) with subsequent circulation in a closed children's group was demonstrated. The study of the blood sera of orphanage residents at least twice vaccinated with IPV revealed the absence of neutralizing antibodies against at least two poliovirus serotypes in almost 20% of children. Therefore, a complete rejection of OPV vaccination can lead to a critical decrease in collective immunity level. The development of new poliovirus vaccines that create mucosal immunity for the adequate replacement of OPV from Sabin strains is necessary.


Asunto(s)
Poliomielitis/virología , Poliovirus/fisiología , Anticuerpos Antivirales/sangre , Preescolar , Femenino , Humanos , Lactante , Masculino , Orfanatos/estadística & datos numéricos , Poliomielitis/sangre , Poliomielitis/epidemiología , Poliomielitis/transmisión , Poliovirus/genética , Poliovirus/aislamiento & purificación , Vacuna Antipolio Oral/administración & dosificación , Vacuna Antipolio Oral/genética , Vacuna Antipolio Oral/inmunología , Federación de Rusia/epidemiología
9.
Viruses ; 11(5)2019 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130655

RESUMEN

Replication of RNA viruses is generally markedly error-prone. Nevertheless, these viruses usually retain their identity under more or less constant conditions due to different mechanisms of mutation tolerance. However, there exists only limited information on quantitative aspects of the mutational tolerance of distinct viral functions. To address this problem, we used here as a model the interaction between a replicative cis-acting RNA element (oriL) of poliovirus and its ligand (viral protein 3CD). The mutational tolerance of a conserved tripeptide of 3CD, directly involved in this interaction, was investigated. Randomization of the relevant codons and reverse genetics were used to define the space of viability-compatible sequences. Surprisingly, at least 11 different amino acid substitutions in this tripeptide were not lethal. Several altered viruses exhibited wild-type-like phenotypes, whereas debilitated (but viable) genomes could increase their fitness by the acquisition of reversions or compensatory mutations. Together with our study on the tolerance of oriL (Prostova et al., 2015), the results demonstrate that at least 42 out of 51 possible nucleotide replacements within the two relevant genomic regions are viability-compatible. These results provide new insights into structural aspects of an important viral function as well as into the general problems of viral mutational robustness and evolution.


Asunto(s)
Interacciones Huésped-Patógeno , Mutación , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/fisiología , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo , Secuencia de Bases , Genoma Viral , Humanos , Plásmidos/genética , ARN Viral/química , Replicación Viral
10.
PeerJ ; 5: e3896, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29018627

RESUMEN

BACKGROUND: Enteroviruses are small non-enveloped viruses with a (+) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features a low-fidelity process, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co-evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein. METHODS: To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6, 400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C. RESULTS: A total of 2,842 full genome sequences was analysed. The majority of domain d apical loops were tetraloops, which belonged to consensus YNHG (Y = U/C, N = any nucleotide, H = A/C/U). The putative RNA-binding tripeptide 154-156 (Enterovirus C 3C protein numeration) was less diverse than the apical domain d loop region and, in contrast to it, was species-specific. DISCUSSION: Despite the suggestion that the RNA-binding tripeptide interacts with the apical region of domain d, they evolve independently in nature. Together, our data indicate the plastic evolution of both interplayers of 3C-oriL recognition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA