Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Rev ; 123(8): 4188-4236, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37015056

RESUMEN

Preceramic polymers (PCPs) are a group of specialty macromolecules that serve as precursors for generating inorganics, including ceramic carbides, nitrides, and borides. PCPs represent interesting synthetic challenges for chemists due to the elements incorporated into their structure. This group of polymers is also of interest to engineers as PCPs enable the processing of polymer-derived ceramic products including high-performance ceramic fibers and composites. These finished ceramic materials are of growing significance for applications that experience extreme operating environments (e.g., aerospace propulsion and high-speed atmospheric flight). This Review provides an overview of advances in the synthesis and postpolymerization modification of macromolecules forming nonoxide ceramics. These PCPs include polycarbosilanes, polysilanes, polysilazanes, and precursors for ultrahigh-temperature ceramics. Following our review of PCP synthetic chemistry, we provide examples of the application and processing of these polymers, including their use in fiber spinning, composite fabrication, and additive manufacturing. The principal objective of this Review is to provide a resource that bridges the disciplines of synthetic chemistry and ceramic engineering while providing both insights and inspiration for future collaborative work that will ultimately drive the PCP field forward.

2.
J Appl Crystallogr ; 57(Pt 4): 945-954, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108813

RESUMEN

Polymer-derived ceramics (PDCs) remain at the forefront of research for a variety of applications including ultra-high-temperature ceramics, energy storage and functional coatings. Despite their wide use, questions remain about the complex structural transition from polymer to ceramic and how local structure influences the final microstructure and resulting properties. This is further complicated when nanofillers are introduced to tailor structural and functional properties, as nanoparticle surfaces can interact with the matrix and influence the resulting structure. The inclusion of crystalline nanofiller produces a mixed crystalline-amorphous composite, which poses characterization challenges. With this study, we aim to address these challenges with a local-scale structural study that probes changes in a polysiloxane matrix with incorporated copper nanofiller. Composites were processed at three unique temperatures to capture mixing, pyrolysis and initial crystallization stages for the pre-ceramic polymer. We observed the evolution of the nanofiller with electron microscopy and applied synchrotron X-ray diffraction with differential pair distribution function (d-PDF) analysis to monitor changes in the matrix's local structure and interactions with the nanofiller. The application of the d-PDF to PDC materials is novel and informs future studies to understand interfacial interactions between nanofiller and matrix throughout PDC processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA