Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gait Posture ; 99: 44-50, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327537

RESUMEN

BACKGROUND: The narrowing of the spinal canal due to degenerative processes may lead to symptomatic lumbar spinal stenosis (sLSS) and impairments in the patients' gait. Changes in lower extremity joint kinematics and trunk flexion angles have been reported, yet less is known about muscle activation patterns of paraspinal and gluteal muscles in patients with sLSS compared to healthy participants. RESEARCH QUESTION: Do muscle activation patterns together with sagittal joint kinematics differ between patients with sLSS and healthy controls and do these differences-quantified using gait scores-correlate with clinical scores? METHODS: In 20 patients with sLSS scheduled for surgery and 19 healthy participants, gait was assessed using seven inertial sensors and muscle activation of gluteus medius, erector spinae and multifidus using wireless surface electromyography (EMG). Differences in joint kinematics and EMG patterns were assessed using statistical parametric mapping with non-parametric independent sample t tests (P < 0.05). Gait scores that describe the overall deviation in joint angles (mGPS) and muscle activation patterns (EMG-Profile Score) were calculated as root mean square distances between patients and healthy participants and their associations with clinical scores (pain, Oswestry Disability Score (ODI)) were analyzed using Spearman's correlation coefficients rho (P < 0.05). RESULTS: Patients had larger mGPS (+1.9°) and EMG-Profile Scores (+50%) and walked on average slower (-0.26 m/s) than controls. EMG patterns revealed higher activation of multifidus, erector spinae and gluteus medius during midstance in patients compared to controls. Clinical scores (pain, ODI) did not correlate with mGPS or EMG-Profile Scores within patients. SIGNIFICANCE: Observed differences in gait and muscle activation patterns and in the summary scores of gait and EMG deviations between patients with sLSS and healthy controls may represent additional functional outcomes reflecting the functional status of patients that can be measured using wearable sensors and hence is suitable for application in clinical practice.


Asunto(s)
Músculos Paraespinales , Estenosis Espinal , Humanos , Fenómenos Biomecánicos/fisiología , Estenosis Espinal/complicaciones , Caminata/fisiología , Electromiografía , Músculo Esquelético/fisiología , Dolor
2.
J Mech Behav Biomed Mater ; 144: 105951, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295386

RESUMEN

In the present work, we test four thin coatings for titanium implants, namely, bioglass, GB14, Beta-Tricalciumphosphate (ß-TCP) and hydroxyapatite (HA) with and without incorporated copper ions for their osteointegrative capacity. A rabbit drill hole model for time intervals up to 24 weeks was used in this study. Implant fixation was evaluated by measuring shear strength of the implant/bone interface. Quantitative histological analysis was performed for the measurements of bone contact area. Implants with and without copper ions were compared after 24 weeks. Thin coatings of GB14, HA or TCP on titanium implants demonstrated high shear strength during the entire test period of up to 24 weeks. Results confirmed osteointegrative properties of the coatings and did not reveal any negative effect of copper ions on osteointegration. The integration of copper in degradable osteoconductive coatings with a thickness of approx. 20 µm represents a promising method of achieving antibacterial shielding during the entire period of bone healing while at the same time improving osteointegration of the implants.


Asunto(s)
Cobre , Durapatita , Animales , Conejos , Titanio , Cerámica , Propiedades de Superficie , Materiales Biocompatibles Revestidos/farmacología , Oseointegración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA