Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 42(8): e112387, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36872914

RESUMEN

The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS-STING pathway-induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING-induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P-binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING-induced autophagy and canonical PI3P-dependent autophagy. Furthermore, we show that the STING-WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS-STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation.


Asunto(s)
Autofagosomas , Autofagia , Proteínas de la Membrana , Autofagosomas/metabolismo , Autofagia/fisiología , ADN/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Humanos
2.
J Nanosci Nanotechnol ; 16(3): 2499-503, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27455661

RESUMEN

Wogonin (5,7-dihydroxy-8-methoxyflavone) is one of the active components of flavonoids isolated from Scutellariae radix and possesses antitumor effect against leukemia. Cadmium-telluride quantum dots (CdTe-QDs) are a kind of nanoparticles with great potential in functioning as an efficient drug delivery vector in biomedical research. In this study, we investigated the synergistic effect of CdTe-QDs with Wogonin on the induction of apoptosis using drug-resistant human leukemia KA cells. Flow cytometry analysis, assay of morphology under electron microscope, quantitative analysis of tumor volume and micro-CT imaging demonstrated that compared with that by pure CdTe-QDs or wogonin, the apoptosis rate increased sharply when treated wirh CdTe-QDs together with wogonin on KA cells. These results proved that the nanocomposites readily overcame the barrier of drug-resistance and provoked cell apoptosis in vitro and in vivo by facilitating the interaction between wogonin and KA cells. As known to all, it is an inevitable tendency that new effective therapies will take the place of conventional chemotherapy and radiotherapy presenting significant disadvantages. According to this article, CdTe-QD combined with wogonin is a possible alternative for some cancer treatments.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos de Cadmio/metabolismo , Flavanonas/farmacología , Leucemia Eritroblástica Aguda/metabolismo , Puntos Cuánticos , Telurio/metabolismo , Animales , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Xenoinjertos , Humanos , Células K562 , Leucemia Eritroblástica Aguda/patología , Ratones , Ratones Desnudos , Microscopía Electrónica de Transmisión , Microtomografía por Rayos X
3.
Yi Chuan ; 38(11): 957-970, 2016 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-27867146

RESUMEN

Cerebral cortex, whose complexity of structure and function has derived from human specific genetic variation, is the most advanced nerve center of human, controlling the cognitive ability which distinguishes human from any other creatures. Using genomics technology, molecular mechanisms of cerebral cortex development and evolution have been disclosed. In this review, we summarize how genomics technologies are used in exploring the influence of human specific genetic variation on cerebral cortex development and evolution, including the genomics methods to study the gene expression differences among the cerebral cortex of human beings, chimpanzee and other mammals; as well as the role of the significant non-coding regulatory sequences-human accelerated regions (HARs) in the process of brain development. We also discuss the future research trends on the human specific genetic variation in the field of neurobiology.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Evolución Molecular , Variación Genética , Animales , Corteza Cerebral/metabolismo , Genética Médica , Genómica , Humanos , Mamíferos/clasificación , Mamíferos/crecimiento & desarrollo , Mamíferos/metabolismo
4.
Protein Cell ; 14(9): 653-667, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707322

RESUMEN

Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.


Asunto(s)
Autofagia , Gotas Lipídicas , Animales , Ratones , Autofagosomas , Homeostasis , Triglicéridos
5.
ACS Appl Mater Interfaces ; 10(1): 105-113, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29281248

RESUMEN

The biosynthesis of nanoparticles in bioreactors using microbial, plant, or animal cells is at the forefront of nanotechnology. We demonstrated for the first time that luminescent, water-soluble ZnO nanocrystals (bio-ZnO NCs) can be spontaneously biosynthesized in the mammalian blood circulation, not in cells, when animals were fed with Zn(CH3COO)2 aqueous solution. Serum albumin, rather than metallothioneins or glutathione, proved to play the pivotal role in biosynthesis. The bio-ZnO NCs were gradually taken up in the liver and degraded and excreted in the urine. Thus, we propose that in mammals such as rodents, bovinae, and humans, excess metal ions absorbed into the cardiovascular system via the intestine can be transformed into nanoparticles by binding to serum albumin, forming a "provisional metal-pool", to reduce the toxicity of free metal ions at high concentration and regulate metal homeostasis in the body. Furthermore, the bio-ZnO NCs, which showed favorable biocompatibility, were functionalized with the anticancer drug daunorubicin and effectively achieved controlled drug release mediated by intracellular glutathione in tumor xenograft mice.


Asunto(s)
Nanopartículas , Animales , Daunorrubicina , Humanos , Luminiscencia , Ratones , Nanotecnología , Óxido de Zinc
6.
ACS Appl Mater Interfaces ; 9(15): 13068-13078, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28358188

RESUMEN

Rapid diagnosis and targeted drug treatment require agents that possess multiple functions. Nanomaterials that facilitate optical imaging and direct drug delivery have shown great promise for effective cancer treatment. In this study, we first modified near-infrared fluorescent indium phosphide quantum dots (InP QDs) with a vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody to afford targeted drug delivery function. Then, a miR-92a inhibitor, an antisense microRNA that enhances the expression of tumor suppressor p63, was attached to the VEGFR2-InP QDs via electrostatic interactions. The functionalized InP nanocomposite (IMAN) selectively targets tumor sites and allows for infrared imaging in vivo. We further explored the mechanism of this active targeting. The IMAN was endocytosed and delivered in the form of microvesicles via VEGFR2-CD63 signaling. Moreover, the IMAN induced apoptosis of human myelogenous leukemia cells through the p63 pathway in vitro and in vivo. These results indicate that the IMAN may provide a new and promising chemotherapy strategy against cancer cells, particularly by its active targeting function and utility in noninvasive three-dimensional tumor imaging.


Asunto(s)
Neoplasias , Anticuerpos Monoclonales , Humanos , MicroARNs , Puntos Cuánticos , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA