Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Plant J ; 118(1): 171-190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128038

RESUMEN

Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.


Asunto(s)
Beta vulgaris , Beta vulgaris/genética , Secuencia de Bases , ADN Satélite , Pool de Genes , Fitomejoramiento , Secuencias Repetitivas de Ácidos Nucleicos/genética , Verduras/genética , ADN , Centrómero/genética , Azúcares
2.
BMC Plant Biol ; 24(1): 627, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961369

RESUMEN

BACKGROUND: Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS: A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS: These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.


Asunto(s)
Antocianinas , Pigmentación , Antocianinas/metabolismo , Antocianinas/genética , Pigmentación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Magnoliopsida/genética , Fenotipo , Filogenia
3.
New Phytol ; 241(1): 471-489, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897060

RESUMEN

In this study, we investigate the genetic mechanisms responsible for the loss of anthocyanins in betalain-pigmented Caryophyllales, considering our hypothesis of multiple transitions to betalain pigmentation. Utilizing transcriptomic and genomic datasets across 357 species and 31 families, we scrutinize 18 flavonoid pathway genes and six regulatory genes spanning four transitions to betalain pigmentation. We examined evidence for hypotheses of wholesale gene loss, modified gene function, altered gene expression, and degeneration of the MBW (MYB-bHLH-WD40) trasnscription factor complex, within betalain-pigmented lineages. Our analyses reveal that most flavonoid synthesis genes remain conserved in betalain-pigmented lineages, with the notable exception of TT19 orthologs, essential for the final step in anthocyanidin synthesis, which appear to have been repeatedly and entirely lost. Additional late-stage flavonoid pathway genes upstream of TT19 also manifest strikingly reduced expression in betalain-pigmented species. Additionally, we find repeated loss and alteration in the MBW transcription complex essential for canonical anthocyanin synthesis. Consequently, the loss and exclusion of anthocyanins in betalain-pigmented species appear to be orchestrated through several mechanisms: loss of a key enzyme, downregulation of synthesis genes, and degeneration of regulatory complexes. These changes have occurred iteratively in Caryophyllales, often coinciding with evolutionary transitions to betalain pigmentation.


Asunto(s)
Antocianinas , Caryophyllales , Humanos , Antocianinas/metabolismo , Betalaínas , Caryophyllales/genética , Evolución Biológica , Transcriptoma , Regulación de la Expresión Génica de las Plantas
4.
Plant Physiol ; 192(3): 1696-1710, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37129240

RESUMEN

The genus Vaccinium L. (Ericaceae) contains premium berryfruit crops, including blueberry, cranberry, bilberry, and lingonberry. Consumption of Vaccinium berries is strongly associated with various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids, including the anthocyanins that provide the attractive red and blue berry colors. Because these phytochemicals are increasingly appealing to consumers, they have become a crop breeding target. There has been substantial recent progress in Vaccinium genomics and genetics together with new functional data on the transcriptional regulation of flavonoids. This is helping to unravel the developmental control of flavonoids and identify genetic regions and genes that can be selected for to further improve Vaccinium crops and advance our understanding of flavonoid regulation and biosynthesis across a broader range of fruit crops. In this update we consider the recent progress in understanding flavonoid regulation in fruit crops, using Vaccinium as an example and highlighting the significant gains in both genomic tools and functional analysis.


Asunto(s)
Flavonoides , Vaccinium , Vaccinium/genética , Antocianinas , Frutas/genética , Fitomejoramiento
5.
J Exp Bot ; 75(1): 219-240, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37813680

RESUMEN

Flavonols are structurally and functionally diverse biomolecules involved in plant biotic and abiotic stress tolerance, pollen development, and inhibition of auxin transport. However, their effects on global gene expression and signaling pathways are unclear. To explore the roles of flavonol metabolites in signaling, we performed comparative transcriptome and targeted metabolite profiling of seedlings from the flavonol-deficient Arabidopsis loss-of-function mutant flavonol synthase1 (fls1) with and without exogenous supplementation of flavonol derivatives (kaempferol, quercetin, and rutin). RNA-seq results indicated that flavonols modulate various biological and metabolic pathways, with significant alterations in camalexin and aliphatic glucosinolate synthesis. Flavonols negatively regulated camalexin biosynthesis but appeared to promote the accumulation of aliphatic glucosinolates via transcription factor-mediated up-regulation of biosynthesis genes. Interestingly, upstream amino acid biosynthesis genes involved in methionine and tryptophan synthesis were altered under flavonol deficiency and exogenous supplementation. Quercetin treatment significantly up-regulated aliphatic glucosinolate biosynthesis genes compared with kaempferol and rutin. In addition, expression and metabolite analysis of the transparent testa7 mutant, which lacks hydroxylated flavonol derivatives, clarified the role of quercetin in the glucosinolate biosynthesis pathway. This study elucidates the molecular mechanisms by which flavonols interfere with signaling pathways, their molecular targets, and the multiple biological activities of flavonols in plants.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Flavonoles/metabolismo , Glucosinolatos/metabolismo , Quempferoles/metabolismo , Quempferoles/farmacología , Quercetina/metabolismo , Quercetina/farmacología , Vías Biosintéticas , Rutina
6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161289

RESUMEN

Receptor-like kinases (RLKs) are key cell signaling components. The rice ARBUSCULAR RECEPTOR-LIKE KINASE 1 (OsARK1) regulates the arbuscular mycorrhizal (AM) association postarbuscule development and belongs to an undefined subfamily of RLKs. Our phylogenetic analysis revealed that ARK1 has an ancient paralogue in spermatophytes, ARK2 Single ark2 and ark1/ark2 double mutants in rice showed a nonredundant AM symbiotic function for OsARK2 Global transcriptomics identified a set of genes coregulated by the two RLKs, suggesting that OsARK1 and OsARK2 orchestrate symbiosis in a common pathway. ARK lineage proteins harbor a newly identified SPARK domain in their extracellular regions, which underwent parallel losses in ARK1 and ARK2 in monocots. This protein domain has ancient origins in streptophyte algae and defines additional overlooked groups of putative cell surface receptors.


Asunto(s)
Micorrizas/metabolismo , Oryza/enzimología , Filogenia , Proteínas Tirosina Quinasas Receptoras/metabolismo , Secuencia de Aminoácidos , Dominios Proteicos , Proteínas Tirosina Quinasas Receptoras/química
7.
BMC Genomics ; 24(1): 429, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528364

RESUMEN

Recent developments in plant genomics have enabled a comprehensive analysis of the medicinal potential of plants based on their gene repertoire. Genes of biosynthesis pathways can be discovered through comparative genomics and through integration of transcriptomic data. Data-driven discovery of specialized metabolites could accelerate research.


Asunto(s)
Plantas Medicinales , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Genómica , Vías Biosintéticas , Genoma de Planta , Transcriptoma
8.
BMC Genomics ; 24(1): 780, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102570

RESUMEN

BACKGROUND: The bHLH transcription factor family is named after the basic helix-loop-helix (bHLH) domain that is a characteristic element of their members. Understanding the function and characteristics of this family is important for the examination of a wide range of functions. As the availability of genome sequences and transcriptome assemblies has increased significantly, the need for automated solutions that provide reliable functional annotations is emphasised. RESULTS: A phylogenetic approach was adapted for the automatic identification and functional annotation of the bHLH transcription factor family. The bHLH_annotator, designed for the automated functional annotation of bHLHs, was implemented in Python3. Sequences of bHLHs described in literature were collected to represent the full diversity of bHLH sequences. Previously described orthologs form the basis for the functional annotation assignment to candidates which are also screened for bHLH-specific motifs. The pipeline was successfully deployed on the two Arabidopsis thaliana accessions Col-0 and Nd-1, the monocot species Dioscorea dumetorum, and a transcriptome assembly of Croton tiglium. Depending on the applied search parameters for the initial candidates in the pipeline, species-specific candidates or members of the bHLH family which experienced domain loss can be identified. CONCLUSIONS: The bHLH_annotator allows a detailed and systematic investigation of the bHLH family in land plant species and classifies candidates based on bHLH-specific characteristics, which distinguishes the pipeline from other established functional annotation tools. This provides the basis for the functional annotation of the bHLH family in land plants and the systematic examination of a wide range of functions regulated by this transcription factor family.


Asunto(s)
Arabidopsis , Plantas , Filogenia , Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción/genética , Secuencias Hélice-Asa-Hélice , Arabidopsis/genética , Arabidopsis/metabolismo
9.
BMC Genomics ; 24(1): 748, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057719

RESUMEN

BACKGROUND: Infection by beet cyst nematodes (BCN, Heterodera schachtii) causes a serious disease of sugar beet, and climatic change is expected to improve the conditions for BCN infection. Yield and yield stability under adverse conditions are among the main breeding objectives. Breeding of BCN tolerant sugar beet cultivars offering high yield in the presence of the pathogen is therefore of high relevance. RESULTS: To identify causal genes providing tolerance against BCN infection, we combined several experimental and bioinformatic approaches. Relevant genomic regions were detected through mapping-by-sequencing using a segregating F2 population. DNA sequencing of contrasting F2 pools and analyses of allele frequencies for variant positions identified a single genomic region which confers nematode tolerance. The genomic interval was confirmed and narrowed down by genotyping with newly developed molecular markers. To pinpoint the causal genes within the potential nematode tolerance locus, we generated long read-based genome sequence assemblies of the tolerant parental breeding line Strube U2Bv and the susceptible reference line 2320Bv. We analyzed continuous sequences of the potential locus with regard to functional gene annotation and differential gene expression upon BCN infection. A cluster of genes with similarity to the Arabidopsis thaliana gene encoding nodule inception protein-like protein 7 (NLP7) was identified. Gene expression analyses confirmed transcriptional activity and revealed clear differences between susceptible and tolerant genotypes. CONCLUSIONS: Our findings provide new insights into the genomic basis of plant-nematode interactions that can be used to design and accelerate novel management strategies against BCN.


Asunto(s)
Beta vulgaris , Nematodos , Animales , Beta vulgaris/genética , Fitomejoramiento , Nematodos/genética , Genómica , Azúcares/metabolismo
10.
BMC Genomics ; 23(1): 220, 2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305581

RESUMEN

BACKGROUND: MYBs are among the largest transcription factor families in plants. Consequently, members of this family are involved in a plethora of processes including development and specialized metabolism. The MYB families of many plant species were investigated in the last two decades since the first investigation looked at Arabidopsis thaliana. This body of knowledge and characterized sequences provide the basis for the identification, classification, and functional annotation of candidate sequences in new genome and transcriptome assemblies. RESULTS: A pipeline for the automatic identification and functional annotation of MYBs in a given sequence data set was implemented in Python. MYB candidates are identified, screened for the presence of a MYB domain and other motifs, and finally placed in a phylogenetic context with well characterized sequences. In addition to technical benchmarking based on existing annotation, the transcriptome assembly of Croton tiglium and the annotated genome sequence of Castanea crenata were screened for MYBs. Results of both analyses are presented in this study to illustrate the potential of this application. The analysis of one species takes only a few minutes depending on the number of predicted sequences and the size of the MYB gene family. This pipeline, the required bait sequences, and reference sequences for a classification are freely available on github: https://github.com/bpucker/MYB_annotator . CONCLUSIONS: This automatic annotation of the MYB gene family in novel assemblies makes genome-wide investigations consistent and paves the way for comparative studies in the future. Candidate genes for in-depth analyses are presented based on their orthology to previously characterized sequences which allows the functional annotation of the newly identified MYBs with high confidence. The identification of orthologs can also be harnessed to detect duplication and deletion events.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes myb , Plantas , Familia de Multigenes , Filogenia , Plantas/genética
11.
BMC Genomics ; 23(1): 739, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36348495

RESUMEN

Here we respond to Zhou (BMC Genomics 21:734, 2020) "Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying peel and pulp color formation" published in BMC Genomics. Given the evolutionary conserved anthocyanin biosynthesis pathway in betalain-pigmented species, we are open to the idea that species with both anthocyanins and betalains might exist. However, in absence of LC-MS/MS spectra, apparent lack of biological replicates, and no comparison to authentic standards, the findings of Zhou (BMC Genomics 21:734, 2020) are not a strong basis to propose the presence of anthocyanins in betalain-pigmented pitaya. In addition, our re-analysis of the datasets indicates the misidentification of important genes and the omission of key flavonoid and anthocyanin synthesis genes ANS and DFR. Finally, our re-analysis of the RNA-Seq dataset reveals no correlation between anthocyanin biosynthesis gene expression and pigment status.


Asunto(s)
Betalaínas , Cactaceae , Betalaínas/metabolismo , Antocianinas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Cactaceae/genética , Cactaceae/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas
12.
BMC Genomics ; 23(1): 113, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35139817

RESUMEN

BACKGROUND: As the major source of sugar in moderate climates, sugar-producing beets (Beta vulgaris subsp. vulgaris) have a high economic value. However, the low genetic diversity within cultivated beets requires introduction of new traits, for example to increase their tolerance and resistance attributes - traits that often reside in the crop wild relatives. For this, genetic information of wild beet relatives and their phylogenetic placements to each other are crucial. To answer this need, we sequenced and assembled the complete plastome sequences from a broad species spectrum across the beet genera Beta and Patellifolia, both embedded in the Betoideae (order Caryophyllales). This pan-plastome dataset was then used to determine the wild beet phylogeny in high-resolution. RESULTS: We sequenced the plastomes of 18 closely related accessions representing 11 species of the Betoideae subfamily and provided high-quality plastome assemblies which represent an important resource for further studies of beet wild relatives and the diverse plant order Caryophyllales. Their assembly sizes range from 149,723 bp (Beta vulgaris subsp. vulgaris) to 152,816 bp (Beta nana), with most variability in the intergenic sequences. Combining plastome-derived phylogenies with read-based treatments based on mitochondrial information, we were able to suggest a unified and highly confident phylogenetic placement of the investigated Betoideae species. Our results show that the genus Beta can be divided into the two clearly separated sections Beta and Corollinae. Our analysis confirms the affiliation of B. nana with the other Corollinae species, and we argue against a separate placement in the Nanae section. Within the Patellifolia genus, the two diploid species Patellifolia procumbens and Patellifolia webbiana are, regarding the plastome sequences, genetically more similar to each other than to the tetraploid Patellifolia patellaris. Nevertheless, all three Patellifolia species are clearly separated. CONCLUSION: In conclusion, our wild beet plastome assemblies represent a new resource to understand the molecular base of the beet germplasm. Despite large differences on the phenotypic level, our pan-plastome dataset is highly conserved. For the first time in beets, our whole plastome sequences overcome the low sequence variation in individual genes and provide the molecular backbone for highly resolved beet phylogenomics. Hence, our plastome sequencing strategy can also guide genomic approaches to unravel other closely related taxa.


Asunto(s)
Beta vulgaris , Beta vulgaris/genética , Genómica , Filogenia , Azúcares , Verduras
13.
Planta ; 256(4): 67, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038740

RESUMEN

MAIN CONCLUSION: We identified 119 typical CaMYB encoding genes and reveal the major components of the proanthocyanidin regulatory network. CaPARs emerged as promising targets for genetic engineering toward improved agronomic traits in C. arietinum. Chickpea (Cicer arietinum) is among the eight oldest crops and has two main types, i.e., desi and kabuli, whose most obvious difference is the color of their seeds. We show that this color difference is due to differences in proanthocyanidin content of seed coats. Using a targeted approach, we performed in silico analysis, metabolite profiling, molecular, genetic, and biochemical studies to decipher the transcriptional regulatory network involved in proanthocyanidin biosynthesis in the seed coat of C. arietinum. Based on the annotated C. arietinum reference genome sequence, we identified 119 typical CaMYB encoding genes, grouped in 32 distinct clades. Two CaR2R3-MYB transcription factors, named CaPAR1 and CaPAR2, clustering with known proanthocyanidin regulators (PARs) were identified and further analyzed. The expression of CaPAR genes correlated well with the expression of the key structural proanthocyanidin biosynthesis genes CaANR and CaLAR and with proanthocyanidin levels. Protein-protein interaction studies suggest the in vivo interaction of CaPAR1 and CaPAR2 with the bHLH-type transcription factor CaTT8. Co-transfection analyses using Arabidopsis thaliana protoplasts showed that the CaPAR proteins form a MBW complex with CaTT8 and CaTTG1, able to activate the promoters of CaANR and CaLAR in planta. Finally, transgenic expression of CaPARs in the proanthocyanidin-deficient A. thaliana mutant tt2-1 leads to complementation of the transparent testa phenotype. Taken together, our results reveal main components of the proanthocyanidin regulatory network in C. arietinum and suggest that CaPARs are relevant targets of genetic engineering toward improved agronomic traits.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cicer , Proantocianidinas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cicer/genética , Cicer/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes myb , Proantocianidinas/metabolismo , Semillas/genética , Semillas/metabolismo
14.
BMC Genomics ; 22(1): 599, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362298

RESUMEN

BACKGROUND: Experimental proof of gene function assignments in plants is based on mutant analyses. T-DNA insertion lines provided an invaluable resource of mutants and enabled systematic reverse genetics-based investigation of the functions of Arabidopsis thaliana genes during the last decades. RESULTS: We sequenced the genomes of 14 A. thaliana GABI-Kat T-DNA insertion lines, which eluded flanking sequence tag-based attempts to characterize their insertion loci, with Oxford Nanopore Technologies (ONT) long reads. Complex T-DNA insertions were resolved and 11 previously unknown T-DNA loci identified, resulting in about 2 T-DNA insertions per line and suggesting that this number was previously underestimated. T-DNA mutagenesis caused fusions of chromosomes along with compensating translocations to keep the gene set complete throughout meiosis. Also, an inverted duplication of 800 kbp was detected. About 10 % of GABI-Kat lines might be affected by chromosomal rearrangements, some of which do not involve T-DNA. Local assembly of selected reads was shown to be a computationally effective method to resolve the structure of T-DNA insertion loci. We developed an automated workflow to support investigation of long read data from T-DNA insertion lines. All steps from DNA extraction to assembly of T-DNA loci can be completed within days. CONCLUSIONS: Long read sequencing was demonstrated to be an effective way to resolve complex T-DNA insertions and chromosome fusions. Many T-DNA insertions comprise not just a single T-DNA, but complex arrays of multiple T-DNAs. It is becoming obvious that T-DNA insertion alleles must be characterized by exact identification of both T-DNA::genome junctions to generate clear genotype-to-phenotype relations.


Asunto(s)
Arabidopsis , Arabidopsis/genética , ADN Bacteriano/genética , Genómica , Mutagénesis Insercional
15.
Plant Mol Biol ; 106(1-2): 157-172, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33704646

RESUMEN

KEY MESSAGE: Our results provide insights into the flavonol biosynthesis regulation of M. truncatula. The R2R3-MYB transcription factor MtMYB134 emerged as tool to improve the flavonol biosynthesis. Flavonols are plant specialized metabolites with vital roles in plant development and defense and are known as diet compound beneficial to human health. In leguminous plants, the regulatory proteins involved in flavonol biosynthesis are not well characterized. Using a homology-based approach, three R2R3-MYB transcription factor encoding genes have been identified in the Medicago truncatula reference genome sequence. The gene encoding a protein with highest similarity to known flavonol regulators, MtMYB134, was chosen for further experiments and was characterized as a functional flavonol regulator from M. truncatula. MtMYB134 expression levels are correlated with the expression of MtFLS2, encoding a key enzyme of flavonol biosynthesis, and with flavonol metabolite content. MtMYB134 was shown to activate the promoters of the A. thaliana flavonol biosynthesis genes AtCHS and AtFLS1 in Arabidopsis protoplasts in a transactivation assay and to interact with the Medicago promoters of MtCHS2 and MtFLS2 in yeast 1-hybrid assays. To ascertain the functional aspect of the identified transcription factor, we developed a sextuple mutant, which is defective in anthocyanin and flavonol biosynthesis. Ectopic expression of MtMYB134 in a multiple myb A. thaliana mutant restored flavonol biosynthesis. Furthermore, overexpression of MtMYB134 in hairy roots of M. truncatula enhanced the biosynthesis of various flavonol derivatives. Taken together, our results provide insight into the understanding of flavonol biosynthesis regulation in M. truncatula and provides MtMYB134 as tool for genetic manipulation to improve flavonol synthesis.


Asunto(s)
Vías Biosintéticas , Flavonoles/biosíntesis , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/enzimología , Medicago truncatula/genética , Mutación/genética , Sistemas de Lectura Abierta/genética , Especificidad de Órganos/genética , Fenotipo , Proteínas de Plantas/química , Raíces de Plantas/genética , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/química
16.
BMC Plant Biol ; 21(1): 297, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187352

RESUMEN

Here we respond to the paper entitled "Contribution of anthocyanin pathways to fruit flesh coloration in pitayas" (Fan et al., BMC Plant Biol 20:361, 2020). In this paper Fan et al. 2020 propose that the anthocyanins can be detected in the betalain-pigmented genus Hylocereus, and suggest they are responsible for the colouration of the fruit flesh. We are open to the idea that, given the evolutionary maintenance of fully functional anthocyanin synthesis genes in betalain-pigmented species, anthocyanin pigmentation might co-occur with betalain pigments, as yet undetected, in some species. However, in absence of the LC-MS/MS spectra and co-elution/fragmentation of the authentic standard comparison, the findings of Fan et al. 2020 are not credible. Furthermore, our close examination of the paper, and re-analysis of datasets that have been made available, indicate numerous additional problems. Namely, the failure to detect betalains in an untargeted metabolite analysis, accumulation of reported anthocyanins that does not correlate with the colour of the fruit, absence of key anthocyanin synthesis genes from qPCR data, likely mis-identification of key anthocyanin genes, unreproducible patterns of correlated RNAseq data, lack of gene expression correlation with pigmentation accumulation, and putative transcription factors that are weak candidates for transcriptional up-regulation of the anthocyanin pathway.


Asunto(s)
Antocianinas/metabolismo , Betalaínas/metabolismo , Cactaceae/metabolismo , Vías Biosintéticas , Cactaceae/genética , Frutas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Genes de Plantas/genética , Reacción en Cadena de la Polimerasa , Transcriptoma
17.
New Phytol ; 229(4): 2324-2338, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33051877

RESUMEN

The evolution of a lipid-based cuticle on aerial plant surfaces that protects against dehydration is considered a fundamental innovation in the colonization of the land by the green plants. However, key evolutionary steps in the early regulation of cuticle synthesis are still poorly understood, owing to limited studies in early-diverging land plant lineages. Here, we characterize a land plant specific subgroup 9 R2R3 MYB transcription factor MpSBG9, in the early-diverging land plant model Marchantia polymorpha, that is homologous to MIXTA proteins in vascular plants. The MpSBG9 functions as a key regulator of cuticle biosynthesis by preferentially regulating expression of orthologous genes for cutin formation, but not wax biosynthesis genes. The MpSBG9 also promotes the formation of papillate cells on the adaxial surface of M. polymorpha, which is consisitent with its canonical role in vascular plants. Our observations imply conserved MYB transcriptional regulation in the control of the cutin biosynthesis pathway as a core genetic network in the common ancestor of all land plants, implicating the land plant-specific MIXTA MYB lineage in the early origin and evolution of the cuticle.


Asunto(s)
Embryophyta , Marchantia , Embryophyta/genética , Embryophyta/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Marchantia/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
New Phytol ; 227(3): 914-929, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31369159

RESUMEN

The evolution of l-DOPA 4,5-dioxygenase activity, encoded by the gene DODA, was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed that l-DOPA 4,5-dioxygenase activity evolved via a single Caryophyllales-specific neofunctionalisation event within the DODA gene lineage. However, this neofunctionalisation event has not been confirmed and the DODA gene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear. To address this, we functionally characterised 23 distinct DODA proteins for l-DOPA 4,5-dioxygenase activity, from four betalain-pigmented and five anthocyanin-pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updated DODA phylogeny, we then explored the evolution of l-DOPA 4,5-dioxygenase activity. We find that low l-DOPA 4,5-dioxygenase activity is distributed across the DODA gene lineage. In this context, repeated gene duplication events within the DODA gene lineage give rise to polyphyletic occurrences of elevated l-DOPA 4,5-dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro-synteny. In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevated l-DOPA 4,5-dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales.


Asunto(s)
Caryophyllales , Dioxigenasas , Betalaínas , Dioxigenasas/genética , Levodopa , Filogenia , Pigmentación
19.
New Phytol ; 224(1): 71-85, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31172524

RESUMEN

Within the angiosperm order Caryophyllales, an unusual class of pigments known as betalains can replace the otherwise ubiquitous anthocyanins. In contrast to the phenylalanine-derived anthocyanins, betalains are tyrosine-derived pigments which contain the chromophore betalamic acid. The origin of betalain pigments within Caryophyllales and their mutual exclusion with anthocyanin pigments have been the subject of considerable research. In recent years, numerous discoveries, accelerated by -omic scale data, phylogenetics and synthetic biology, have shed light on the evolution of the betalain biosynthetic pathway in Caryophyllales. These advances include the elucidation of the biosynthetic steps in the betalain pathway, identification of transcriptional regulators of betalain synthesis, resolution of the phylogenetic history of key genes, and insight into a role for modulation of primary metabolism in betalain synthesis. Here we review how molecular genetics have advanced our understanding of the betalain biosynthetic pathway, and discuss the impact of phylogenetics in revealing its evolutionary history. In light of these insights, we explore our new understanding of the origin of betalains, the mutual exclusion of betalains and anthocyanins, and the homoplastic distribution of betalain pigmentation within Caryophyllales. We conclude with a speculative conceptual model for the stepwise emergence of betalain pigmentation.


Asunto(s)
Betalaínas/biosíntesis , Evolución Biológica , Caryophyllales/metabolismo , Betalaínas/química , Vías Biosintéticas , Caryophyllales/genética , Filogenia , Pigmentación/genética
20.
BMC Genomics ; 19(1): 980, 2018 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-30594132

RESUMEN

BACKGROUND: Most eukaryotic genes comprise exons and introns thus requiring the precise removal of introns from pre-mRNAs to enable protein biosynthesis. U2 and U12 spliceosomes catalyze this step by recognizing motifs on the transcript in order to remove the introns. A process which is dependent on precise definition of exon-intron borders by splice sites, which are consequently highly conserved across species. Only very few combinations of terminal dinucleotides are frequently observed at intron ends, dominated by the canonical GT-AG splice sites on the DNA level. RESULTS: Here we investigate the occurrence of diverse combinations of dinucleotides at predicted splice sites. Analyzing 121 plant genome sequences based on their annotation revealed strong splice site conservation across species, annotation errors, and true biological divergence from canonical splice sites. The frequency of non-canonical splice sites clearly correlates with their divergence from canonical ones indicating either an accumulation of probably neutral mutations, or evolution towards canonical splice sites. Strong conservation across multiple species and non-random accumulation of substitutions in splice sites indicate a functional relevance of non-canonical splice sites. The average composition of splice sites across all investigated species is 98.7% for GT-AG, 1.2% for GC-AG, 0.06% for AT-AC, and 0.09% for minor non-canonical splice sites. RNA-Seq data sets of 35 species were incorporated to validate non-canonical splice site predictions through gaps in sequencing reads alignments and to demonstrate the expression of affected genes. CONCLUSION: We conclude that bona fide non-canonical splice sites are present and appear to be functionally relevant in most plant genomes, although at low abundance.


Asunto(s)
Genoma de Planta , Intrones/genética , Plantas/genética , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Exones/genética , Estudio de Asociación del Genoma Completo , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA