RESUMEN
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly" fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O(3)), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O(3) concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O(3) concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
Asunto(s)
Agricultura , Contaminación del Aire/análisis , Arecaceae/fisiología , Nitrógeno/análisis , Ozono/análisis , Aceites de Plantas/análisis , Clima Tropical , Aeronaves , Butadienos/análisis , Geografía , Hemiterpenos/análisis , Monoterpenos/análisis , Óxido Nítrico/análisis , Dióxido de Nitrógeno/análisis , Aceite de Palma , Pentanos/análisis , Ácido Peracético/análogos & derivados , Ácido Peracético/análisis , Factores de TiempoRESUMEN
Primary productivity of terrestrial vegetation is expected to increase under the influence of increasing atmospheric carbon dioxide concentrations ([CO2]). Depending on the fate of such additionally fixed carbon, this could lead to an increase in terrestrial carbon storage, and thus a net terrestrial sink of atmospheric carbon. Such a mechanism is generally believed to be the primary global driver behind the observed large net uptake of anthropogenic CO2 emissions by the biosphere. Mechanisms driving CO2 uptake in the Terrestrial Biosphere Models (TBMs) used to attribute and project terrestrial carbon sinks, including that from increased [CO2], remain in large parts unchanged since those models were conceived two decades ago. However, there exists a large body of new data and understanding providing an opportunity to update these models, and directing towards important topics for further research. In this review we highlight recent developments in understanding of the effects of elevated [CO2] on photosynthesis, and in particular on the fate of additionally fixed carbon within the plant with its implications for carbon turnover rates, on the regulation of photosynthesis in response to environmental limitations on in-plant carbon sinks, and on emergent ecosystem responses. We recommend possible avenues for model improvement and identify requirements for better data on core processes relevant to the understanding and modelling of the effect of increasing [CO2] on the global terrestrial carbon sink.
Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono , Ecosistema , Modelos Teóricos , Estadística como Asunto , FotosíntesisRESUMEN
Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.
RESUMEN
We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity.
Asunto(s)
Agricultura , Atmósfera/química , Árboles/química , Aerosoles/química , Contaminantes Atmosféricos/química , Aeronaves , Derivados de Alilbenceno , Anisoles/química , Arecaceae/química , Arecaceae/fisiología , Atmósfera/análisis , Borneo , Butadienos/química , Carbono/química , Hemiterpenos/química , Radical Hidroxilo/química , Industrias , Malasia , Monoterpenos/química , Óxidos de Nitrógeno/química , Ozono/química , Pentanos/química , Fotoquímica , Árboles/fisiología , Compuestos Orgánicos Volátiles/químicaRESUMEN
We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.