Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Arch Toxicol ; 93(4): 1039-1049, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30854615

RESUMEN

Trefoil factors (TFFs) are bioactive peptides expressed by several epithelia, including the intestine, where they regulate key functions such as tissue regeneration, barrier function and inflammation. Although food-associated mycotoxins, including deoxynivalenol (DON), are known to impact many intestinal functions, modulation of TFFs during mycotoxicosis has never been investigated. Here, we analyzed the effect of DON on TFFs expression using both human goblet cells (HT29-16E cells) and porcine intestinal explants. Results showed that very low doses of DON (nanomolar range) inhibit the secretion of TFFs by human goblet cells (IC50 of 361, 387 and 243 nM for TFF1, 2 and 3, respectively) and prevent wound healing. RT-qPCR analysis demonstrated that the inhibitory effect of DON is related to a suppression of TFFs mRNA expression. Experiments conducted on porcine intestinal explants confirmed the results obtained on cells. Finally, the use of specific inhibitors of signal pathways demonstrated that DON-mediated suppression of TFFs expression mainly involved Protein Kinase R and the MAP kinases (MAPK) p38 and ERK1/2. Taken together, our results show for the first time that at very low doses, DON suppresses the expression and production of intestinal TFFs and alters wound healing. Given the critical role of TFFs in tissue repair, our results suggest that DON-mediated suppression of TFFs contributes to the alterations of intestinal integrity the caused by this toxin.


Asunto(s)
Expresión Génica/efectos de los fármacos , Células Caliciformes/efectos de los fármacos , Yeyuno/efectos de los fármacos , Factor Trefoil-3/genética , Tricotecenos/toxicidad , Animales , Células CACO-2 , Técnicas de Cultivo de Célula , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Células HT29 , Humanos , Yeyuno/inmunología , Yeyuno/metabolismo , Porcinos , Factor Trefoil-3/metabolismo
2.
J Biol Chem ; 286(47): 40814-23, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21931163

RESUMEN

α-Galactosides are non-digestible carbohydrates widely distributed in plants. They are a potential source of energy in our daily food, and their assimilation by microbiota may play a role in obesity. In the intestinal tract, they are degraded by microbial glycosidases, which are often modular enzymes with catalytic domains linked to carbohydrate-binding modules. Here we introduce a bifunctional enzyme from the human intestinal bacterium Ruminococcus gnavus E1, α-galactosidase/sucrose kinase (AgaSK). Sequence analysis showed that AgaSK is composed of two domains: one closely related to α-galactosidases from glycoside hydrolase family GH36 and the other containing a nucleotide-binding motif. Its biochemical characterization showed that AgaSK is able to hydrolyze melibiose and raffinose to galactose and either glucose or sucrose, respectively, and to specifically phosphorylate sucrose on the C6 position of glucose in the presence of ATP. The production of sucrose-6-P directly from raffinose points toward a glycolytic pathway in bacteria, not described so far. The crystal structures of the galactosidase domain in the apo form and in complex with the product shed light onto the reaction and substrate recognition mechanisms and highlight an oligomeric state necessary for efficient substrate binding and suggesting a cross-talk between the galactose and kinase domains.


Asunto(s)
Metagenoma , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ruminococcus/enzimología , Sacarosa/metabolismo , alfa-Galactosidasa/metabolismo , Anaerobiosis , Animales , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Intestinos/microbiología , Modelos Moleculares , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Rafinosa/metabolismo , Ratas , Especificidad por Sustrato , alfa-Galactosidasa/química
3.
Biomolecules ; 11(11)2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34827611

RESUMEN

Adhesion to the digestive mucosa is considered a key factor for bacterial persistence within the gut. In this study, we show that Ruminococcus gnavus E1 can express the radA gene, which encodes an adhesin of the MSCRAMMs family, only when it colonizes the gut. The RadA N-terminal region contains an all-ß bacterial Ig-like domain known to interact with collagens. We observed that it preferentially binds human immunoglobulins (IgA and IgG) and intestinal mucins. Using deglycosylated substrates, we also showed that the RadA N-terminal region recognizes two different types of motifs, the protein backbone of human IgG and the glycan structure of mucins. Finally, competition assays with lectins and free monosaccharides identified Galactose and N-Acetyl-Galactosamine motifs as specific targets for the binding of RadA to mucins and the surface of human epithelial cells.


Asunto(s)
Clostridiales , Mucinas , Polisacáridos , Simbiosis
4.
Mol Nutr Food Res ; 59(6): 1076-87, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25727397

RESUMEN

SCOPE: The food-associated mycotoxin deoxynivalenol (DON) is known to affect intestinal functions. However, its effect on intestinal mucus is poorly characterized. METHODS AND RESULTS: We analyzed the effects of DON on human goblet cells (HT29-16E cells) and porcine intestinal explants. Results showed that subtoxic doses of DON (as low as 1 µM) decreased mucin (MUC) production. qPCR analysis demonstrated that this inhibition was due to a specific decrease in the level of mRNA encoding for the intestinal membrane-associated (MUC1) and the secreted MUCs (MUC2, MUC3). Mechanistic studies demonstrated that DON effect relied on the activation of the protein kinase R and the mitogen-activated protein kinase p38 ultimately leading to the inhibition of the expression of resistin-like molecule beta, a known positive regulator of MUC expression. CONCLUSION: Taken together, our results show that at low doses found in food and feed, DON is able to affect the expression and production of MUCs by human and animal goblet cells. Due to the important role of MUCs in the barrier function and in the interaction of commensal bacteria with the host, such effect could explain the observed modifications in the microbial diversity and the increased susceptibility to enteric infection following exposure to DON.


Asunto(s)
Células Caliciformes/efectos de los fármacos , Intestinos/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Células HT29 , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/citología , Masculino , Mucina-1/genética , Mucina-1/metabolismo , Mucina 2/genética , Mucina 2/metabolismo , Mucina 3/genética , Mucina 3/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Resistina/genética , Resistina/metabolismo , Porcinos , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Toxicol Sci ; 145(2): 372-82, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25766886

RESUMEN

The intestinal epithelium possesses active immune functions including the production of proinflammatory cytokines and antimicrobial molecules such as nitric oxide (NO). As observed with immune cells, the production of NO by the intestinal epithelium is mainly due to the expression of the inducible NO synthase (iNOS or NOS2). Epithelial immune functions could be affected by many factors including pathogenic microorganisms and food-associated toxins (bacterial and fungal). Among the various mycotoxins, deoxynivalenol (DON) is known to alter the systemic and intestinal immunity. However, little is known about the effect of DON on the production of NO by the intestinal epithelium. We studied the impact of DON on the intestinal expression of iNOS using the Caco-2 cell model. In line with its proinflammatory activity, we observed that DON dose-dependently up-regulates the expression of iNOS mRNA. Surprisingly, DON failed to increase the expression of iNOS protein. When testing the effects of DON on cytokine-mediated induction of iNOS, we found that very low concentrations of DON (ie, 1 µM) decrease the amount of iNOS protein but not of iNOS mRNA. We demonstrated that DON's effect on iNOS protein relies on its ability to activate signal pathways and to increase iNOS ubiquitinylation and degradation through the proteasome pathway. Taken together, our results demonstrate that although DON causes intestinal inflammation, it suppresses the ability of the gut epithelium to express iNOS and to produce NO, potentially explaining the increased susceptibility of animals to intestinal infection following exposure to low doses of DON.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Contaminación de Alimentos , Inflamación/inducido químicamente , Mucosa Intestinal/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Tricotecenos/toxicidad , Células CACO-2 , Citocinas/farmacología , Relación Dosis-Respuesta a Droga , Estabilidad de Enzimas , Células Epiteliales/enzimología , Regulación Enzimológica de la Expresión Génica , Humanos , Inflamación/enzimología , Inflamación/genética , Mucosa Intestinal/enzimología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN Mensajero/biosíntesis , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Ubiquitinación
6.
FEMS Microbiol Ecol ; 78(2): 405-15, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22092178

RESUMEN

Ruminococcin C (RumC) is a trypsin-dependent bacteriocin produced by Ruminococcus gnavus E1, a gram-positive strict anaerobic strain isolated from human feces. It consists of at least three similar peptides active against Clostridium perfringens. In this article, a 15-kb region from R. gnavus E1 chromosome, containing the biosynthetic gene cluster of RumC was characterized. It harbored 17 open reading frames (called rum(c) genes) with predicted functions in bacteriocin biosynthesis and post-translational modification, signal transduction regulation, and immunity. An unusual feature of the locus is the presence of five genes encoding highly homologous, but nonidentical RumC precursors. The transcription levels of the rum(c) genes were quantified. The rumC genes were found to be highly expressed in vivo, when R. gnavus E1 colonized the digestive tract of mono-contaminated rats, whereas the amount of corresponding transcripts was below detection level when it grew in liquid culture medium. Moreover, the rumC-like genes were disseminated among 10 strains (R. gnavus or related species) previously isolated from human fecal samples and selected for their capability to produce a trypsin-dependant anti-C. perfringens compound. All harbored at least a rumC1-like copy, four exhibited rumC1-5 genes identical to those of strain E1.


Asunto(s)
Proteínas Bacterianas/genética , Bacteriocinas/genética , Clostridium perfringens/efectos de los fármacos , Ruminococcus/genética , Animales , Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/toxicidad , Secuencia de Bases , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Heces/microbiología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Datos de Secuencia Molecular , Familia de Multigenes , Sistemas de Lectura Abierta , Procesamiento Proteico-Postraduccional , Ratas , Ruminococcus/crecimiento & desarrollo , Ruminococcus/metabolismo , Tripsina/genética , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA