Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecol Lett ; 25(1): 89-100, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34725912

RESUMEN

Infections early in life can have enduring effects on an organism's development and immunity. In this study, we show that this equally applies to developing 'superorganisms'--incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen's immune system to suppress pathogen proliferation. Early-life queen pathogen exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen's pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism.


Asunto(s)
Hormigas , Animales , Femenino , Humanos , Reproducción , Estaciones del Año , Conducta Social
2.
Proc Natl Acad Sci U S A ; 115(11): 2782-2787, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29463746

RESUMEN

Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host's vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk.


Asunto(s)
Hormigas/microbiología , Hormigas/fisiología , Animales , Beauveria/fisiología , Conducta Animal , Aseo Animal , Interacciones Huésped-Patógeno , Metarhizium/fisiología , Modelos Biológicos
3.
Annu Rev Entomol ; 63: 105-123, 2018 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-28945976

RESUMEN

Social insect colonies have evolved many collectively performed adaptations that reduce the impact of infectious disease and that are expected to maximize their fitness. This colony-level protection is termed social immunity, and it enhances the health and survival of the colony. In this review, we address how social immunity emerges from its mechanistic components to produce colony-level disease avoidance, resistance, and tolerance. To understand the evolutionary causes and consequences of social immunity, we highlight the need for studies that evaluate the effects of social immunity on colony fitness. We discuss the roles that host life history and ecology have on predicted eco-evolutionary dynamics, which differ among the social insect lineages. Throughout the review, we highlight current gaps in our knowledge and promising avenues for future research, which we hope will bring us closer to an integrated understanding of socio-eco-evo-immunology.


Asunto(s)
Himenópteros/inmunología , Conducta Social , Animales , Evolución Biológica , Interacciones Huésped-Patógeno , Himenópteros/genética , Isópteros/genética , Isópteros/inmunología
4.
BMC Evol Biol ; 17(1): 219, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29025392

RESUMEN

BACKGROUND: Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. RESULTS: Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. CONCLUSIONS: We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.


Asunto(s)
Hormigas/microbiología , Hormigas/fisiología , Metarhizium/fisiología , Conducta Social , Animales , Conducta Animal , Comportamiento de Nidificación
5.
Naturwissenschaften ; 100(12): 1125-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24233126

RESUMEN

Pathogens exert a strong selection pressure on organisms to evolve effective immune defences. In addition to individual immunity, social organisms can act cooperatively to produce collective defences. In many ant species, queens have the option to found a colony alone or in groups with other, often unrelated, conspecifics. These associations are transient, usually lasting only as long as each queen benefits from the presence of others. In fact, once the first workers emerge, queens fight to the death for dominance. One potential advantage of co-founding may be that queens benefit from collective disease defences, such as mutual grooming, that act against common soil pathogens. We test this hypothesis by exposing single and co-founding queens to a fungal parasite, in order to assess whether queens in co-founding associations have improved survival. Surprisingly, co-foundresses exposed to the entomopathogenic fungus Metarhizium did not engage in cooperative disease defences, and consequently, we find no direct benefit of multiple queens on survival. However, an indirect benefit was observed, with parasite-exposed queens producing more brood when they co-founded, than when they were alone. We suggest this is due to a trade-off between reproduction and immunity. Additionally, we report an extraordinary ability of the queens to tolerate an infection for long periods after parasite exposure. Our study suggests that there are no social immunity benefits for co-founding ant queens, but that in parasite-rich environments, the presence of additional queens may nevertheless improve the chances of colony founding success.


Asunto(s)
Hormigas/microbiología , Conducta Animal/fisiología , Metarhizium/fisiología , Animales , Femenino , Reproducción/fisiología , Conducta Social , Análisis de Supervivencia
6.
Curr Biol ; 32(19): 4279-4285.e4, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987212

RESUMEN

"Ecological intelligence" hypotheses posit that animal learning and memory evolve to meet the demands posed by foraging and, together with social intelligence and cognitive buffer hypotheses, provide a key framework for understanding cognitive evolution.1-5 However, identifying the critical environments where cognitive investment reaps significant benefits has proved challenging.6-8 Here, we capitalize upon seasonal variation in forage availability for a social insect model (Bombus terrestris audax) to establish how the benefits of short-term memory, assayed using a radial arm maze (RAM), vary with resource availability. Following a staggered design over 2 years, whereby bees from standardized colonies at identical life-history stages underwent cognitive testing before foraging in the wild, we found that RAM performance predicts foraging efficiency-a key determinant of colony fitness-in plentiful spring foraging conditions but that this relationship is reversed during the summer floral dearth. Our results suggest that the selection for enhanced cognitive abilities is unlikely to be limited to harsh environments where food is hard to find or extract,5,9-11 highlighting instead that the challenges of rich and plentiful environments, which present multiple options in short succession, could be a broad driver in the evolution of certain cognitive traits. VIDEO ABSTRACT.


Asunto(s)
Conducta Alimentaria , Aprendizaje , Animales , Abejas , Memoria a Corto Plazo , Extractos Vegetales , Estaciones del Año
7.
PeerJ ; 7: e7208, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31423353

RESUMEN

Systemic insecticides such as neonicotinoids and sulfoximines can be present in the nectar and pollen of treated crops, through which foraging bees can become acutely exposed. Research has shown that acute, field realistic dosages of neonicotinoids can negatively influence bee learning and memory, with potential consequences for bee behaviour. As legislative reassessment of neonicotinoid use occurs globally, there is an urgent need to understand the potential risk of other systemic insecticides. Sulfoxaflor, the first branded sulfoximine-based insecticide, has the same mode of action as neonicotinoids, and may potentially replace them over large geographical ranges. Here we assessed the impact of acute sulfoxaflor exposure on performance in two paradigms that have previously been used to illustrate negative impacts of neonicotinoid pesticides on bee learning and memory. We assayed whether acute sulfoxaflor exposure influences (a) olfactory conditioning performance in both bumblebees (Bombus terrestris) and honeybees (Apis mellifera), using a proboscis extension reflex assay, and (b) working memory performance of bumblebees, using a radial-arm maze. We found no evidence to suggest that sulfoxaflor influenced performance in either paradigm. Our results suggest that despite a shared mode of action between sulfoxaflor and neonicotinoid-based insecticides, widely-documented effects of neonicotinoids on bee cognition may not be observed with sulfoxaflor, at least at acute exposure regimes.

8.
Curr Biol ; 28(19): R1139-R1140, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30300596

RESUMEN

Many animals use antimicrobials to prevent or cure disease [1,2]. For example, some animals will ingest plants with medicinal properties, both prophylactically to prevent infection and therapeutically to self-medicate when sick. Antimicrobial substances are also used as topical disinfectants, to prevent infection, protect offspring and to sanitise their surroundings [1,2]. Social insects (ants, bees, wasps and termites) build nests in environments with a high abundance and diversity of pathogenic microorganisms - such as soil and rotting wood - and colonies are often densely crowded, creating conditions that favour disease outbreaks. Consequently, social insects have evolved collective disease defences to protect their colonies from epidemics. These traits can be seen as functionally analogous to the immune system of individual organisms [3,4]. This 'social immunity' utilises antimicrobials to prevent and eradicate infections, and to keep the brood and nest clean. However, these antimicrobial compounds can be harmful to the insects themselves, and it is unknown how colonies prevent collateral damage when using them. Here, we demonstrate that antimicrobial acids, produced by workers to disinfect the colony, are harmful to the delicate pupal brood stage, but that the pupae are protected from the acids by the presence of a silk cocoon.


Asunto(s)
Antiinfecciosos/efectos adversos , Hormigas/inmunología , Pupa/metabolismo , Animales , Antiinfecciosos/metabolismo , Hormigas/metabolismo , Conducta Animal , Insectos , Pupa/fisiología , Conducta Social
9.
Elife ; 72018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29310753

RESUMEN

In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.


Asunto(s)
Antibiosis , Hormigas/microbiología , Metarhizium/efectos de los fármacos , Metarhizium/crecimiento & desarrollo , Pupa/microbiología , Animales , Conducta Animal , Conducta Social
10.
Trends Ecol Evol ; 32(11): 861-872, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28899581

RESUMEN

Social insect societies are long-standing models for understanding social behaviour and evolution. Unlike other advanced biological societies (such as the multicellular body), the component parts of social insect societies can be easily deconstructed and manipulated. Recent methodological and theoretical innovations have exploited this trait to address an expanded range of biological questions. We illustrate the broadening range of biological insight coming from social insect biology with four examples. These new frontiers promote open-minded, interdisciplinary exploration of one of the richest and most complex of biological phenomena: sociality.


Asunto(s)
Conducta Animal , Himenópteros/fisiología , Isópteros/fisiología , Conducta Social , Animales , Evolución Biológica
11.
PLoS One ; 9(8): e103989, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25098331

RESUMEN

Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen--Nosema ceranae (Microsporidia)--on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed.


Asunto(s)
Abejas/microbiología , Fenómenos de Retorno al Lugar Habitual , Interacciones Huésped-Patógeno/fisiología , Microsporidiosis/fisiopatología , Animales , Nosema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA