Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 32(4): 649-654, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33819023

RESUMEN

Pretargeted imaging and radioimmunotherapy approaches are designed to have superior targeting properties over directly targeted antibodies but impose more complex pharmacology, which hinders efforts to optimize the ligands prior to human applications. Human embryonic kidney 293T cells expressing the humanized single-chain variable fragment (scFv) C825 (huC825) with high-affinity for DOTA-haptens (293T-huC825) in a transmembrane-anchored format eliminated the requirement to use other pretargeting reagents and provided a simplified, accelerated assay of radiohapten capture while offering normalized cell surface expression of the molecular target of interest. Using binding assays, ex vivo biodistribution, and in vivo imaging, we demonstrated that radiohaptens based on benzyl-DOTA and a second generation "Proteus" DOTA-platform effectively and specifically engaged membrane-bound huC825, achieving favorable tumor-to-normal tissue uptake ratios in mice. Furthermore, [86Y]Y-DOTA-Bn predicted absorbed dose to critical organs with reasonable accuracy for both [177Lu]Lu-DOTA-Bn and [225Ac]Ac-Pr, which highlights the benefit of a dosimetry-based treatment approach.


Asunto(s)
Ingeniería Celular , Haptenos , Radioinmunoterapia/métodos , Radiofármacos/química , Animales , Autorradiografía , Células HEK293 , Humanos , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Mol Pharm ; 15(6): 2133-2141, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29684277

RESUMEN

Antibodies labeled with positron-emitting isotopes have been used for tumor detection, predicting which patients may respond to tumor antigen-directed therapy, and assessing pharmacodynamic effects of drug interventions. Prolactin receptor (PRLR) is overexpressed in breast and prostate cancers and is a new target for cancer therapy. We evaluated REGN2878, an anti-PRLR monoclonal antibody, as an immunoPET reagent. REGN2878 was labeled with Zr-89 after conjugation with desferrioxamine B or labeled with I-131/I-124. In vitro determination of the half-maximal inhibitory concentration (IC50) of parental REGN2878, DFO-REGN2878, and iodinated REGN2878 was performed by examining the effect of the increasing amounts of these on uptake of trace-labeled I-131 REGN2878. REGN1932, a non-PRLR binding antibody, was used as a control. Imaging and biodistribution studies were performed in mice bearing tumor xenografts with various expression levels of PRLR, including MCF-7, transfected MCF-7/PRLR, PC3, and transfected PC3/PRLR and T4D7v11 cell lines. The specificity of uptake in tumors was evaluated by comparing Zr-89 REGN2878 and REGN1932, and in vivo competition compared Zr-89 REGN2878 uptake in tumor xenografts with and without prior injection of 2 mg of nonradioactive REGN2878. The competition binding assay of DFO-REGN2878 at ratios of 3.53-5.77 DFO per antibody showed IC50 values of 0.4917 and 0.7136 nM, respectively, compared to 0.3455 nM for parental REGN2878 and 0.3343 nM for I-124 REGN2878. Imaging and biodistribution studies showed excellent targeting of Zr-89 REGN2878 in PRLR-positive xenografts at delayed times of 189 h (presented as mean ± 1 SD, percent injected activity per mL (%IA/mL) 74.6 ± 33.8%IA/mL). In contrast, MCF-7/PRLR tumor xenografts showed a low uptake (7.0 ± 2.3%IA/mL) of control Zr-89 REGN1932 and a very low uptake and rapid clearance of I-124 REGN2878 (1.4 ± 0.6%IA/mL). Zr-89 REGN2878 has excellent antigen-specific targeting in various PRLR tumor xenograft models. We estimated, using image-based kinetic modeling, that PRLR antigen has a very rapid in vivo turnover half-life of ∼14 min from the cell membrane. Despite relatively modest estimated tumor PRLR expression numbers, PRLR-expressing cells have shown final retention of the Zr-89 REGN2878 antibody, with an uptake that appeared to be related to PRLR expression. This reagent has the potential to be used in clinical trials targeting PRLR.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Inmunoconjugados/administración & dosificación , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/administración & dosificación , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Inmunoconjugados/farmacocinética , Ratones , Ratones Desnudos , Imagen Molecular/métodos , Neoplasias/patología , Radiofármacos/química , Radiofármacos/inmunología , Radiofármacos/farmacocinética , Receptores de Prolactina/inmunología , Receptores de Prolactina/metabolismo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Eur J Nucl Med Mol Imaging ; 43(5): 925-937, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26596724

RESUMEN

PURPOSE: GPA33 is a colorectal cancer (CRC) antigen with unique retention properties after huA33-mediated tumor targeting. We tested a pretargeted radioimmunotherapy (PRIT) approach for CRC using a tetravalent bispecific antibody with dual specificity for GPA33 tumor antigen and DOTA-Bn-(radiolanthanide metal) complex. METHODS: PRIT was optimized in vivo by titrating sequential intravenous doses of huA33-C825, the dextran-based clearing agent, and the C825 haptens (177)Lu-or (86)Y-DOTA-Bn in mice bearing the SW1222 subcutaneous (s.c.) CRC xenograft model. RESULTS: Using optimized PRIT, therapeutic indices (TIs) for tumor radiation-absorbed dose of 73 (tumor/blood) and 12 (tumor/kidney) were achieved. Estimated absorbed doses (cGy/MBq) to tumor, blood, liver, spleen, and kidney for single-cycle PRIT were 65.8, 0.9 (TI 73), 6.3 (TI 10), 6.6 (TI 10), and 5.3 (TI 12), respectively. Two cycles of PRIT (66.6 or 111 MBq (177)Lu-DOTA-Bn) were safe and effective, with a complete response of established s.c. tumors (100 - 700 mm(3)) in nine of nine mice, with two mice alive without recurrence at >140 days. Tumor log kill in this model was estimated to be 2.1 - 3.0 based on time to 500-mm(3) tumor recurrence. In addition, PRIT dosimetry/diagnosis was performed by PET imaging of the positron-emitting DOTA hapten (86)Y-DOTA-Bn. CONCLUSION: We have developed anti-GPA33 PRIT as a triple-step theranostic strategy for preclinical detection, dosimetry, and safe targeted radiotherapy of established human colorectal mouse xenografts.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Afinidad de Anticuerpos , Neoplasias Colorrectales/diagnóstico por imagen , Inmunoconjugados/uso terapéutico , Glicoproteínas de Membrana/inmunología , Radioinmunoterapia , Radiofármacos/uso terapéutico , Animales , Anticuerpos Biespecíficos/inmunología , Neoplasias Colorrectales/radioterapia , Inmunoconjugados/inmunología , Inmunoglobulina G/inmunología , Lutecio/uso terapéutico , Ratones , Radiofármacos/inmunología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Radioisótopos de Itrio/uso terapéutico
4.
Eur J Nucl Med Mol Imaging ; 41(5): 985-94, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24604591

RESUMEN

PURPOSE: The PET tracer, (124)I-cG250, directed against carbonic anhydrase IX (CAIX) shows promise for presurgical diagnosis of clear-cell renal cell carcinoma (ccRCC) (Divgi et al. in Lancet Oncol 8:304-310, 2007; Divgi et al. in J Clin Oncol 31:187-194, 2013). The radiometal (89)Zr, however, may offer advantages as a surrogate PET nuclide over (124)I in terms of greater tumor uptake and retention (Rice et al. in Semin Nucl Med 41:265-282, 2011). We have developed a nonlinear immunokinetic model to facilitate a quantitative comparison of absolute uptake and antibody turnover between (124)I-cG250 and (89)Zr-cG250 using a human ccRCC xenograft tumor model in mice. We believe that this unique model better relates quantitative imaging data to the salient biological features of tumor antibody-antigen binding and turnover. METHODS: We conducted experiments with (89)Zr-cG250 and (124)I-cG250 using a human ccRCC cell line (SK-RC-38) to characterize the binding affinity and internalization kinetics of the two tracers in vitro. Serial PET imaging was performed in mice bearing subcutaneous ccRCC tumors to simultaneously detect and quantify time-dependent tumor uptake in vivo. Using the known specific activities of the two tracers, the equilibrium rates of antibody internalization and turnover in the tumors were derived from the PET images using nonlinear compartmental modeling. RESULTS: The two tracers demonstrated virtually identical tumor cell binding and internalization but showed markedly different retentions in vitro. Superior PET images were obtained using (89)Zr-cG250, owing to the more prolonged trapping of the radiolabel in the tumor and simultaneous washout from normal tissues. Estimates of cG250/CAIX complex turnover were 1.35 - 5.51 × 10(12) molecules per hour per gram of tumor (20 % of receptors internalized per hour), and the ratio of (124)I/(89)Zr atoms released per unit time by tumor was 17.5. CONCLUSION: Pairwise evaluation of (89)Zr-cG250 and (124)I-cG250 provided the basis for a nonlinear immunokinetic model which yielded quantitative information about the binding and internalization of radioantibody bound to CAIX on tumor cells in vivo. (89)Zr-cG250 is likely to provide high-quality PET images and may be a useful tool to quantify CAIX/cG250 receptor turnover and cG250-accessible antigen density noninvasively in humans.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Antígenos de Neoplasias/metabolismo , Anhidrasas Carbónicas/metabolismo , Carcinoma de Células Renales/diagnóstico por imagen , Radioisótopos de Yodo/farmacocinética , Tomografía de Emisión de Positrones , Circonio/farmacocinética , Animales , Antígenos de Neoplasias/inmunología , Anhidrasa Carbónica IX , Anhidrasas Carbónicas/inmunología , Línea Celular Tumoral , Humanos , Cinética , Ratones , Unión Proteica , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Mol Pharm ; 11(2): 400-16, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24219178

RESUMEN

A series of N-acetylgalactosamine-dendrons (NAG-dendrons) and dextrans bearing biotin moieties were compared for their ability to complex with and sequester circulating bispecific antitumor antibody streptavidin fusion protein (scFv4-SA) in vivo, to improve tumor-to-normal tissue concentration ratios for multistep targeted (MST) radioimmunotherapy and diagnosis. Specifically, a total of five NAG-dendrons employing a common synthetic scaffold structure containing 4, 8, 16, or 32 carbohydrate residues and a single biotin moiety were prepared (NAGB), and for comparative purposes, a biotinylated-dextran with an average molecular weight of 500 kD was synthesized from amino-dextran (DEXB). One of the NAGB compounds, CA16, has been investigated in humans; our aim was to determine if other NAGB analogues (e.g., CA8 or CA4) were bioequivalent to CA16 and/or better suited as MST reagents. In vivo studies included dynamic positron-emission tomography (PET) imaging of (124)I-labeled-scFv4-SA clearance and dual-label biodistribution studies following MST directed at subcutaneous (s.c.) human colon adenocarcinoma xenografts in mice. The MST protocol consists of three injections: first, a scFv4-SA specific for an antitumor-associated glycoprotein (TAG-72); second, CA16 or other clearing agent; and third, radiolabeled biotin. We observed using PET imaging of the (124)I-labeled-scFv4-SA clearance that the spatial arrangement of ligands conjugated to NAG (i.e., biotin linked with an extended spacer, referred to herein as long-chain (LC)) can impact the binding to the antibody in circulation and subsequent liver uptake of the NAG-antibody complex. Also, NAGB CA32-LC or CA16-LC can be utilized during MST to achieve comparable tumor-to-blood ratios and absolute tumor uptake seen previously with CA16. Finally, DEXB was equally effective as NAGB CA32-LC at lowering scFv4-SA in circulation, but at the expense of reducing absolute tumor uptake of radiolabeled biotin.


Asunto(s)
Neoplasias del Colon/diagnóstico , Neoplasias del Colon/radioterapia , Complejos de Coordinación , Dextranos , Imagen Molecular , Radioinmunoterapia , Radioisótopos/química , Animales , Secuencia de Carbohidratos , Línea Celular Tumoral , Complejos de Coordinación/química , Complejos de Coordinación/uso terapéutico , Dextranos/química , Dextranos/uso terapéutico , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Xenoinjertos , Humanos , Ratones , Estructura Molecular , Tomografía de Emisión de Positrones
6.
Bioconjug Chem ; 24(12): 2088-103, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24147780

RESUMEN

Dendrimer clearing agents represent a unique class of compounds for use in multistep targeting (MST) in radioimmunotherapy and imaging. These compounds were developed to facilitate the removal of excess tumor-targeting monoclonal antibody (mAb) prior to administration of the radionuclide to minimize exposure of normal tissue to radiation. Clearing agents are designed to capture the circulating mAb, and target it to the liver for metabolism. Glycodendrons are ideally suited for MST applications as these highly branched compounds are chemically well-defined, thus advantageous over heterogeneous macromolecules. Previous studies have described glycodendron 3 as a clearing agent for use in three-step MST protocols, and early in vivo assessment of 3 showed promise. However, synthetic challenges have hampered its availability for further development. In this report we describe a new sequence of chemical steps which enables the straightforward synthesis and analytical characterization of this class of dendrons. With accessibility and analytical identification solved, we sought to evaluate both lower and higher generation dendrons for hepatocyte targeting as well as clearance of a model protein. We prepared a series of clearing agents where a single biotin is connected to glycodendrons displaying four, eight, sixteen or thirty-two α-thio-N-acetylgalactosamine (α-SGalNAc) units, resulting in compounds with molecular weights ranging from 2 to 17 kDa, respectively. These compounds were fully characterized by LCMS and NMR. We then evaluated the capacity of these agents to clear a model (131)I-labeled single chain variable fragment antibody-streptavidin ((131)I-scFv-SAv) fusion protein from blood and tissue in mice, and compared their clearing efficiencies to that of a 500 kDa dextran-biotin conjugate. Glycodendrons and dextran-biotin exhibited enhanced blood clearance of the scFv-SAv construct. Biodistribution analysis showed liver targeting/uptake of the scFv-SAv construct to be 2-fold higher for compounds 1 to 4, as well as for the 500 kDa dextran, over saline. Additionally, the data suggest the glycodendrons clear through the liver, whereas the dextran through reticuloendothelial system (RES) metabolism.


Asunto(s)
Acetilgalactosamina/metabolismo , Dendrímeros/metabolismo , Hígado/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Cadena Única/metabolismo , Acetilgalactosamina/farmacocinética , Animales , Dendrímeros/farmacocinética , Femenino , Radioisótopos de Yodo , Ratones , Proteínas Recombinantes de Fusión/sangre , Anticuerpos de Cadena Única/sangre , Estreptavidina/genética
7.
J Nucl Med ; 64(9): 1439-1445, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348919

RESUMEN

Epithelial ovarian cancer (EOC) is often asymptomatic and presents clinically in an advanced stage as widespread peritoneal microscopic disease that is generally considered to be surgically incurable. Targeted α-therapy with the α-particle-emitting radionuclide 225Ac (half-life, 9.92 d) is a high-linear-energy-transfer treatment approach effective for small-volume disease and even single cells. Here, we report the use of human epidermal growth factor receptor 2 (HER2) 225Ac-pretargeted radioimmunotherapy (PRIT) to treat a mouse model of human EOC SKOV3 xenografts growing as peritoneal carcinomatosis (PC). Methods: On day 0, 105 SKOV3 cells transduced with a luciferase reporter gene were implanted intraperitoneally in nude mice, and tumor engraftment was verified by bioluminescent imaging (BLI). On day 15, treatment was started using 1 or 2 cycles of 3-step anti-HER2 225Ac-PRIT (37 kBq/cycle as 225Ac-Proteus DOTA), separated by a 1-wk interval. Efficacy and toxicity were monitored for up to 154 d. Results: Untreated PC-tumor-bearing nude mice showed a median survival of 112 d. We used 2 independent measures of response to evaluate the efficacy of 225Ac-PRIT. First, a greater proportion of the treated mice (9/10 1-cycle and 8/10 2-cycle; total, 17/20; 85%) survived long-term compared with controls (9/27, 33%), and significantly prolonged survival was documented (log-rank [Mantel-Cox] P = 0.0042). Second, using BLI, a significant difference in the integrated BLI signal area to 98 d was noted between controls and treated groups (P = 0.0354). Of a total of 8 mice from the 2-cycle treatment group (74 kBq total) that were evaluated by necropsy, kidney radiotoxicity was mild and did not manifest itself clinically (normal serum blood urea nitrogen and creatinine). Dosimetry estimates (relative biological effectiveness-weighted dose, where relative biological effectiveness = 5) per 37 kBq administered for tumors and kidneys were 56.9 and 16.1 Gy, respectively. One-cycle and 2-cycle treatments were equally effective. With immunohistology, mild tubular changes attributable to α-toxicity were observed in both therapeutic groups. Conclusion: Treatment of EOC PC-tumor-bearing mice with anti-HER2 225Ac-PRIT resulted in histologic cures and prolonged survival with minimal toxicity. Targeted α-therapy using the anti-HER2 225Ac-PRIT system is a potential treatment for otherwise incurable EOC.


Asunto(s)
Neoplasias Peritoneales , Radioinmunoterapia , Humanos , Animales , Ratones , Radioinmunoterapia/métodos , Ratones Desnudos , Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/radioterapia , Neoplasias Peritoneales/tratamiento farmacológico , Radioisótopos/uso terapéutico , Línea Celular Tumoral
8.
Theranostics ; 13(15): 5469-5482, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908719

RESUMEN

Rationale: The in vivo dynamics of CAR-T cells remain incompletely understood. Novel methods are urgently needed to longitudinally monitor transferred cells non-invasively for biodistribution, functionality, proliferation, and persistence in vivo and for improving their cytotoxic potency in case of treatment failure. Methods: Here we engineered CD19 CAR-T cells ("Thor"-cells) to express a membrane-bound scFv, huC825, that binds DOTA-haptens with picomolar affinity suitable for labeling with imaging or therapeutic radionuclides. We assess its versatile utility for serial tracking studies with PET and delivery of α-radionuclides to enhance anti-tumor killing efficacy in sub-optimal adoptive cell transfer in vivo using Thor-cells in lymphoma models. Results: We show that this reporter gene/probe platform enables repeated, sensitive, and specific assessment of the infused Thor-cells in the whole-body using PET/CT imaging with exceptionally high contrast. The uptake on PET correlates with the Thor-cells on a cellular and functional level. Furthermore, we report the ability of Thor-cells to accumulate cytotoxic alpha-emitting radionuclides preferentially at tumor sites, thus increasing therapeutic potency. Conclusion: Thor-cells are a new theranostic agent that may provide crucial information for better and safer clinical protocols of adoptive T cell therapies, as well as accelerated development strategies.


Asunto(s)
Antineoplásicos , Radioinmunoterapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular , Inmunoterapia Adoptiva/métodos , Radioisótopos/metabolismo , Antineoplásicos/metabolismo , Linfocitos T/metabolismo
9.
Mol Cancer Ther ; 21(1): 125-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34667111

RESUMEN

Peritoneal carcinomatosis (PC) is considered incurable, and more effective therapies are needed. Herein we test the hypothesis that GPA33-directed intracompartmental pretargeted radioimmunotherapy (PRIT) can cure colorectal peritoneal carcinomatosis. Nude mice were implanted intraperitoneally with luciferase-transduced GPA33-expressing SW1222 cells for aggressive peritoneal carcinomatosis (e.g., resected tumor mass 0.369 ± 0.246 g; n = 17 on day 29). For GPA33-PRIT, we administered intraperitoneally a high-affinity anti-GPA33/anti-DOTA bispecific antibody (BsAb), followed by clearing agent (intravenous), and lutetium-177 (Lu-177) or yttrium-86 (Y-86) radiolabeled DOTA-radiohapten (intraperitoneal) for beta/gamma-emitter therapy and PET imaging, respectively. The DOTA-radiohaptens were prepared from S-2-(4-aminobenzyl)-1,4,7, 10-tetraazacyclododecane tetraacetic acid chelate (DOTA-Bn). Efficacy and toxicity of single- versus three-cycle therapy were evaluated in mice 26-27 days post-tumor implantation. Single-cycle treatment ([177Lu]LuDOTA-Bn 111 MBq; tumor dose: 4,992 cGy) significantly prolonged median survival (MS) approximately 2-fold to 84.5 days in comparison with controls (P = 0.007). With three-cycle therapy (once weekly, total 333 MBq; tumor dose: 14,975 cGy), 6/8 (75%) survived long-term (MS > 183 days). Furthermore, for these treated long-term survivors, 1 mouse was completely disease free (microscopic "cure") at necropsy; the others showed stabilized disease, which was detectable during PET-CT using [86Y]DOTA-Bn. Treatment controls had MS ranging from 42-52.5 days (P < 0.001) and 19/20 mice succumbed to progressive intraperitoneal disease by 69 days. Multi-cycle GPA33 DOTA-PRIT significantly prolongs survival with reversible myelosuppression and no chronic marrow (929 cGy to blood) or kidney (982 cGy) radiotoxicity, with therapeutic indices of 12 for blood and 12 for kidneys. MTD was not reached.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Peritoneales/tratamiento farmacológico , Radioinmunoterapia/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Desnudos
10.
Clin Cancer Res ; 27(22): 6145-6155, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34475100

RESUMEN

PURPOSE: Abnormal Notch signaling promotes cancer cell growth and tumor progression in various cancers. Targeting γ-secretase, a pivotal regulator in the Notch pathway, has yielded numerous γ-secretase inhibitors (GSIs) for clinical investigation in the last 2 decades. However, GSIs have demonstrated minimal success in clinical trials in part due to the lack of specific and precise tools to assess γ-secretase activity and its inhibition in vivo. EXPERIMENTAL DESIGN: We designed an imaging probe based on GSI Semagacestat structure and synthesized the radioiodine-labeled analogues [131I]- or [124I]-PN67 from corresponding trimethyl-tin precursors. Both membrane- and cell-based ligand-binding assays were performed using [131I]-PN67 to determine the binding affinity and specificity for γ-secretase in vitro. Moreover, we evaluated [124I]-PN67 by PET imaging in mammary tumor and glioblastoma mouse models. RESULTS: The probe was synthesized through iodo-destannylation using chloramine-T as an oxidant with a high labeling yield and efficiency. In vitro binding results demonstrate the high specificity of this probe and its ability for target replacement study by clinical GSIs. PET imaging studies demonstrated a significant (P < 0.05) increased in the uptake of [124I]-PN67 in tumors versus blocking or sham control groups across multiple mouse models, including 4T1 allograft, MMTV-PyMT breast cancer, and U87 glioblastoma allograft. Ex vivo biodistribution and autoradiography corroborate these results, indicating γ-secretase specific tumor accumulation of [124I]-PN67. CONCLUSIONS: [124I]-PN67 is a novel PET imaging agent that enables assessment of γ-secretase activity and target engagement of clinical GSIs.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Neoplasias de la Mama , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Radioisótopos de Yodo , Ratones , Tomografía de Emisión de Positrones , Receptores Notch/metabolismo , Distribución Tisular
11.
J Nucl Med ; 62(4): 584-590, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32826318

RESUMEN

With the successful development and increased use of targeted radionuclide therapy for treating cancer comes the increased risk of radiation injury to bone marrow-both direct suppression and stochastic effects, leading to neoplasia. Herein, we report a novel radioprotector drug, a liposomal formulation of γ-tocotrienol (GT3), or GT3-Nano for short, to mitigate bone marrow radiation damage during targeted radionuclide therapy. Methods: GT3 was loaded into liposomes using passive loading. 64Cu-GT3-Nano and 3H-GT3-Nano were synthesized to study the in vivo biodistribution profile of the liposome and GT3 individually. The radioprotection efficacy of GT3-Nano was assessed after acute 137Cs whole-body irradiation at a sublethal (4 Gy), a lethal (9 Gy), or a single high-dose administration of 153Sm-ethylenediamine-N,N,N',N'-tetrakis(methylene phosphonic acid) (EDTMP). Flow cytometry and fluorescence microscopy were used to analyze hematopoietic cell population dynamics and the cellular site of GT3-Nano localization in the spleen and bone marrow, respectively. Results: Bone marrow uptake and retention (percentage injected dose per gram of tissue) at 24 h was 6.98 ± 2.34 for 64Cu-GT3-Nano and 7.44 ± 2.52 for 3H-GT3-Nano. GT3-Nano administered 24 h before or after 4 Gy of total-body irradiation (TBI) promoted rapid and complete hematopoietic recovery, whereas recovery of controls stalled at 60%. GT3-Nano demonstrated dose-dependent radioprotection, achieving 90% survival at 50 mg/kg against lethal 9-Gy TBI. Flow cytometry of the bone marrow indicated that progenitor bone marrow cells MPP2 and CMP were upregulated in GT3-Nano-treated mice. Immunohistochemistry showed that GT3-Nano accumulates in CD105-positive sinusoid epithelial cells. Conclusion: GT3-Nano is highly effective in mitigating the marrow-suppressive effects of sublethal and lethal TBI in mice. GT3-Nano can facilitate rapid recovery of hematopoietic components in mice treated with the endoradiotherapeutic agent 153Sm-EDTMP.


Asunto(s)
Cromanos/administración & dosificación , Cromanos/farmacología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Protectores contra Radiación/administración & dosificación , Protectores contra Radiación/farmacología , Radioterapia/efectos adversos , Vitamina E/análogos & derivados , Animales , Cromanos/farmacocinética , Liposomas , Ratones , Protectores contra Radiación/farmacocinética , Distribución Tisular , Vitamina E/administración & dosificación , Vitamina E/farmacocinética , Vitamina E/farmacología
12.
Theranostics ; 10(25): 11359-11375, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052220

RESUMEN

This is the initial report of an α-based pre-targeted radioimmunotherapy (PRIT) using 225Ac and its theranostic pair, 111In. We call our novel tumor-targeting DOTA-hapten PRIT system "proteus-DOTA" or "Pr." Herein we report the first results of radiochemistry development, radiopharmacology, and stoichiometry of tumor antigen binding, including the role of specific activity, anti-tumor efficacy, and normal tissue toxicity with the Pr-PRIT approach (as α-DOTA-PRIT). A series of α-DOTA-PRIT therapy studies were performed in three solid human cancer xenograft models of colorectal cancer (GPA33), breast cancer (HER2), and neuroblastoma (GD2), including evaluation of chronic toxicity at ~20 weeks of select survivors. Methods: Preliminary biodistribution experiments in SW1222 tumor-bearing mice revealed that 225Ac could not be efficiently pretargeted with current DOTA-Bn hapten utilized for 177Lu or 90Y, leading to poor tumor uptake in vivo. Therefore, we synthesized Pr consisting of an empty DOTA-chelate for 225Ac, tethered via a short polyethylene glycol linker to a lutetium-complexed DOTA for picomolar anti-DOTA chelate single-chain variable fragment (scFv) binding. Pr was radiolabeled with 225Ac and its imaging surrogate, 111In. In vitro studies verified anti-DOTA scFv recognition of [225Ac]Pr, and in vivo biodistribution and clearance studies were performed to evaluate hapten suitability and in vivo targeting efficiency. Results: Intravenously (i.v.) administered 225Ac- or 111In-radiolabeled Pr in mice showed rapid renal clearance and minimal normal tissue retention. In vivo pretargeting studies show high tumor accumulation of Pr (16.71 ± 5.11 %IA/g or 13.19 ± 3.88 %IA/g at 24 h p.i. for [225Ac]Pr and [111In]Pr, respectively) and relatively low uptake in normal tissues (all average ≤ 1.4 %IA/g at 24 h p.i.). Maximum tolerated dose (MTD) was not reached for either [225Ac]Pr alone or pretargeted [225Ac]Pr at administered activities up to 296 kBq/mouse. Single-cycle treatment consisting of α-DOTA-PRIT with either huA33-C825 bispecific anti-tumor/anti-DOTA-hapten antibody (BsAb), anti-HER2-C825 BsAb, or hu3F8-C825 BsAb for targeting GPA33, HER2, or GD2, respectively, was highly effective. In the GPA33 model, no complete responses (CRs) were observed but prolonged overall survival of treated animals was 42 d for α-DOTA-PRIT vs. 25 d for [225Ac]Pr only (P < 0.0001); for GD2, CRs (7/7, 100%) and histologic cures (4/7, 57%); and for HER2, CRs (7/19, 37%) and histologic cures (10/19, 56%) with no acute or chronic toxicity. Conclusions: [225Ac]Pr and its imaging biomarker [111In]Pr demonstrate optimal radiopharmacologic behavior for theranostic applications of α-DOTA-PRIT. For this initial evaluation of efficacy and toxicity, single-cycle treatment regimens were performed in all three systems. Histologic toxicity was not observed, so MTD was not observed. Prolonged overall survival, CRs, and histologic cures were observed in treated animals. In comparison to RIT with anti-tumor IgG antibodies, [225Ac]Pr has a much improved safety profile. Ultimately, these data will be used to guide clinical development of toxicity and efficacy studies of [225Ac]Pr, with the goal of delivering massive lethal doses of radiation to achieve a high probability of cure without toxicity.


Asunto(s)
Partículas alfa/uso terapéutico , Neoplasias/terapia , Radioinmunoterapia/métodos , Radiofármacos/administración & dosificación , Nanomedicina Teranóstica/métodos , Actinio/administración & dosificación , Actinio/farmacocinética , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Femenino , Semivida , Compuestos Heterocíclicos con 1 Anillo/administración & dosificación , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Humanos , Radioisótopos de Indio/administración & dosificación , Radioisótopos de Indio/farmacocinética , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/inmunología , Neoplasias/patología , Radioinmunoterapia/efectos adversos , Radiofármacos/química , Radiofármacos/farmacocinética , Dosificación Radioterapéutica , Distribución Tisular , Pruebas de Toxicidad Crónica , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancer Cell ; 36(5): 559-573.e7, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31668946

RESUMEN

Alterations in protein-protein interaction networks are at the core of malignant transformation but have yet to be translated into appropriate diagnostic tools. We make use of the kinetic selectivity properties of an imaging probe to visualize and measure the epichaperome, a pathologic protein-protein interaction network. We are able to assay and image epichaperome networks in cancer and their engagement by inhibitor in patients' tumors at single-lesion resolution in real time, and demonstrate that quantitative evaluation at the level of individual tumors can be used to optimize dose and schedule selection. We thus provide preclinical and clinical evidence in the use of this theranostic platform for precision medicine targeting of the aberrant properties of protein networks.


Asunto(s)
Antineoplásicos/administración & dosificación , Chaperonas Moleculares/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Mapas de Interacción de Proteínas/efectos de los fármacos , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Chaperonas Moleculares/metabolismo , Imagen Molecular , Neoplasias/diagnóstico por imagen , Neoplasias/genética , Neoplasias/patología , Medicina de Precisión/métodos , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Nanomedicina Teranóstica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Theranostics ; 8(18): 5106-5125, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30429889

RESUMEN

In recent reports, we have shown that optimized pretargeted radioimmunotherapy (PRIT) based on molecularly engineered antibody conjugates and 177Lu-DOTA chelate (DOTA-PRIT) can be used to cure mice bearing human solid tumor xenografts using antitumor antibodies to minimally internalizing membrane antigens, GPA33 (colon) and GD2 (neuroblastoma). However, many solid tumor membrane antigens are internalized after antibody binding and it is generally believed that internalizing tumor membrane antigens are not suitable targets for PRIT. In this study, we tested the hypothesis that DOTA-PRIT can be performed successfully to target HER2, an internalizing membrane antigen widely expressed in breast, ovarian, and gastroesophageal junction cancers. Methods: DOTA-PRIT was carried out in athymic nude mice bearing BT-474 xenografts, a HER2-expressing human breast cancer, using a three-step dosing regimen consisting of sequential intravenous administrations of: 1) a bispecific IgG-scFv (210 kD) format (BsAb) carrying the IgG sequence of the anti-HER2 antibody trastuzumab and the scFv "C825" with high-affinity, hapten-binding antibody for Bn-DOTA (metal) (BsAb: anti-HER2-C825), 2) a 500 kD dextran-based clearing agent, followed by 3) 177Lu-DOTA-Bn. At the time of treatment, athymic nude mice bearing established subcutaneous BT-474 tumors (medium- and smaller-sized tumors with tumor volumes of 209 ± 101 mm3 and ranging from palpable to 30 mm3, respectively), were studied along with controls. We studied single- and multi-dose regimens. For groups receiving fractionated treatment, we verified quantitative tumor targeting during each treatment cycle using non-invasive imaging with single-photon emission computed tomography/computed tomography (SPECT/CT). Results: We achieved high therapeutic indices (TI, the ratio of radiation-absorbed dose in tumor to radiation-absorbed dose to critical organs, such as bone marrow) for targeting in blood (TI = 28) and kidney (TI = 7), while delivering average radiation-absorbed doses of 39.9 cGy/MBq to tumor. Based on dosimetry estimates, we implemented a curative fractionated therapeutic regimen for medium-sized tumors that would deliver approximately 70 Gy to tumors, which required treatment with a total of 167 MBq 177Lu-DOTA-Bn/mouse (estimated absorbed tumor dose: 66 Gy). This regimen was well tolerated and achieved 100% complete responses (CRs; defined herein as tumor volume equal to or smaller than 4.2 mm3), including 62.5% histologic cure (5/8) and 37.5% microscopic residual disease (3/8) at 85 days (d). Treatment controls showed tumor progression to 207 ± 201% of pre-treatment volume at 85 d and no CRs. Finally, we show that treatment with this curative 177Lu regimen leads to a very low incidence of histopathologic abnormalities in critical organs such as bone marrow and kidney among survivors compared with non-treated controls. Conclusion: Contrary to popular belief, we demonstrate that DOTA-PRIT can be successfully adapted to an internalizing antigen-antibody system such as HER2, with sufficient TIs and absorbed tumor doses to achieve a high probability of cures of established human breast cancer xenografts while sparing critical organs of significant radiotoxicity.


Asunto(s)
Anticuerpos Antineoplásicos/administración & dosificación , Neoplasias de la Mama/terapia , Terapia Molecular Dirigida/métodos , Octreótido/análogos & derivados , Compuestos Organometálicos/administración & dosificación , Radioinmunoterapia/métodos , Receptor ErbB-2/metabolismo , Nanomedicina Teranóstica/métodos , Animales , Antígenos de Neoplasias/metabolismo , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Octreótido/administración & dosificación , Resultado del Tratamiento
15.
J Med Chem ; 50(23): 5853-7, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17956080

RESUMEN

Tyrosine kinases often play pivotal roles in the pathogenesis of cancer and are good candidates for therapeutic intervention and targeted molecular imaging. The precursor synthesis, radiosynthesis, and biological characterization of a fluorine-18 analog of dasatinib, a multitargeted kinase inhibitor, are reported. Compound 5 potently inhibits Abl, Src, and Kit kinases and inhibits K562 and M07e/p210bcr-abl human leukemic cell growth. Using positron emission tomography, we visualized K562 tumor xenografts in mice with [18F]-5.


Asunto(s)
Radioisótopos de Flúor , Pirimidinas/síntesis química , Radiofármacos/síntesis química , Tiazoles/síntesis química , Animales , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dasatinib , Proteínas de Fusión bcr-abl , Humanos , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-kit/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Radiofármacos/farmacocinética , Radiofármacos/farmacología , Tiazoles/farmacocinética , Tiazoles/farmacología , Trasplante Heterólogo , Familia-src Quinasas/antagonistas & inhibidores
16.
Mol Imaging Biol ; 19(6): 944-951, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28534214

RESUMEN

PURPOSE: We studied the effect of varying specific activity of [68Ga]DKFZ-PSMA11 ([68Ga]DP11) on repeated imaging of prostate-specific membrane antigen-positive (PSMA+) xenograft tumors. PROCEDURES: Athymic nude mice bearing PC3-PIP (PSMA+) and PC3 (PSMA-) bilateral flank tumors were assessed to study intra- and inter-day repeatability of [68Ga]DP11 imaging in mice administered [68Ga]DP11 or [67Ga]DP11 (as a dilution tracer) using imaging and biodistribution studies. RESULTS: Region of interest (ROI) analysis of the [68Ga]DP11 imaging study indicated that the uptake was constant on the same day or consecutive days. Prior imaging with [68Ga]DP11 did not significantly influence the subsequent uptake of [68Ga]DP11. Uptake of [68Ga]DP11 (60 min) and [67Ga]DP11 (24 h) in PC3-PIP tumors was 12.37 ± 4.19 %ID/g and 12.49 ± 6.88 %ID/g, respectively; [68Ga]DP11 was 13.83 ± 3.77 and 17.76 ± 1.84 on same-day and 15.98 ± 5.82 %ID/g on second-day imaging. CONCLUSIONS: This study demonstrates that [68Ga]DP11, in a given PSMA+ lesion, is constant under several same-day or serial-day imaging conditions.


Asunto(s)
Radioisótopos de Galio/química , Tomografía de Emisión de Positrones , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Radiofármacos/síntesis química , Radiofármacos/química , Reproducibilidad de los Resultados , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Nucl Med Biol ; 43(12): 781-787, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27694056

RESUMEN

INTRODUCTION: Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. METHODS: Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. RESULTS: PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18±3.69%ID/g for 90nm liposomes and 7.01±0.92%ID/g for 140nm liposomes at 24h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90nm particles is approximately 0.89±0.48%ID/g in tumor and 14.22±8.07%ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83±0.49%ID/g and 2.23±1.00%ID/g. CONCLUSION: Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents.


Asunto(s)
Médula Ósea/diagnóstico por imagen , Radioisótopos de Cobre , Liposomas , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Médula Ósea/metabolismo , Composición de Medicamentos , Marcaje Isotópico , Liposomas/síntesis química , Liposomas/química , Liposomas/metabolismo , Liposomas/farmacocinética , Masculino , Ratones , Ratones Desnudos , Distribución Tisular
18.
EJNMMI Res ; 6(1): 7, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26801327

RESUMEN

BACKGROUND: We applied a non-linear immunokinetic model to quantitatively compare absolute antibody uptake and turnover in subcutaneous LNCaP human prostate cancer (PCa) xenografts of two radiolabeled forms of the humanized anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 ((124)I-J591 and (89)Zr-J591). Using the model, we examined the impact of dose on the tumor and plasma positron emission tomography (PET)-derived time-activity curves. We also sought to predict the optimal targeting index (ratio of integrated-tumor-to-integrated-plasma activity concentrations) for radioimmunotherapy. METHODS: The equilibrium rates of antibody internalization and turnover in the tumors were derived from PET images up to 96 h post-injection using compartmental modeling with a non-linear transfer rate. In addition, we serially imaged groups of LNCaP tumor-bearing mice injected with (89)Zr-J591 antibody doses ranging from antigen subsaturating to saturating to examine the suitability of using a non-linear approach and derived the time-integrated concentration (in µM∙hours) of administered tracer in tumor as a function of the administered dose of antibody. RESULTS: The comparison of (124)I-J591 and (89)Zr-J591 yielded similar model-derived values of the total antigen concentration and internalization rate. The association equilibrium constant (k a) was twofold higher for (124)I, but there was a ~tenfold greater tumoral efflux rate of (124)I from tumor compared to that of (89)Zr. Plots of surface-bound and internalized radiotracers indicate similar behavior up to 24 h p.i. for both (124)I-J591 and (89)Zr-J591, with the effect of differential clearance rates becoming apparent after about 35 h p.i. Estimates of J591/PSMA complex turnover were 3.9-90.5 × 10(12) (for doses from 60 to 240 µg) molecules per hour per gram of tumor (20 % of receptors internalized per hour). CONCLUSIONS: Using quantitative compartmental model methods, surface binding and internalization rates were shown to be similar for both (124)I-J591 and (89)Zr-J591 forms, as expected. The large difference in clearance rates of the radioactivity from the tumor is likely due to differential trapping of residualizing zirconium versus non-residualizing iodine. Our non-linear model was found to be superior to a conventional linear model. This finding and the calculated activity persistence time in tumor have important implications for radioimmunotherapy and other antibody-based therapies in patients.

20.
J Control Release ; 149(3): 292-8, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21047536

RESUMEN

Positron emission tomography (PET) of epidermal growth factor receptor (EGFR) kinase-specific radiolabeled tracers could provide a means for non-invasively characterizing EGFR expression and signaling activity in patients' tumors before, during, and after therapy with EGFR inhibitors. Towards this goal, our group has developed PET tracers which irreversibly bind to EGFR. However, tumor uptake is relatively low because of both the lipophilicity of such tracers (e.g. the morpholino-[124I]-IPQA [SKI 212243]), with octanol-to-water partition coefficients of up to 4, and a short dwell time in the blood and significant hepatobiliary clearance and intestinal reuptake. Liposomal nanoparticle delivery systems may favorably alter the pharmacokinetic profile and improve tumor targeting of highly lipophilic but otherwise promising cancer imaging tracers, such as the EGFR inhibitor SKI 243. SKI 243 is therefore an interesting model molecule for incorporation into lipid-based nanoparticles, as it would not only improve their solubility but also increase the circulation time, availability and, potentially, targeting of tumors. In the current study, we compared the pharmacokinetics and tumor targeting of the bare EGFR kinase-targeting radiotracer SKI 212243 (SKI 243) with that of the same tracer embedded in liposomes. SKI 243 and liposomal SKI 243 are both taken up by tumor xenografts but liposomal SKI 243 remained in the blood longer and consequently exhibited a 3- to 6-fold increase in uptake in the tumor among several other organs.


Asunto(s)
Antineoplásicos/administración & dosificación , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiofármacos/administración & dosificación , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Humanos , Liposomas , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Radiofármacos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA