Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 35(9): e21836, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34407246

RESUMEN

Memorizing pheromonal locations is critical for many mammalian species as it involves finding mates and avoiding competitors. In rodents, pheromonal information is perceived by the main and accessory olfactory systems. However, the role of somatosensation in context-dependent learning and memorizing of pheromone locations remains unexplored. We addressed this problem by training female mice on a multimodal task to locate pheromones by sampling volatiles emanating from male urine through the orifices of varying dimensions or shapes that are sensed by their vibrissae. In this novel pheromone location assay, female mice' preference toward male urine scent decayed over time when they were permitted to explore pheromones vs neutral stimuli, water. On training them for the associations involving olfactory and whisker systems, it was established that they were able to memorize the location of opposite sex pheromones, when tested 15 days later. This memory was not formed either when the somatosensory inputs through whisker pad were blocked or when the pheromonal cues were replaced with that of same sex. The association between olfactory and somatosensory systems was further confirmed by the enhanced expression of the activity-regulated cytoskeleton protein. Furthermore, the activation of main olfactory bulb circuitry by pheromone volatiles did not cause any modulation in learning and memorizing non-pheromonal volatiles. Our study thus provides the evidence for associations formed between different sensory modalities facilitating the long-term memory formation relevant to social and reproductive behaviors.


Asunto(s)
Aprendizaje Discriminativo/fisiología , Odorantes/análisis , Percepción Olfatoria/fisiología , Feromonas/análisis , Olfato/fisiología , Vibrisas/fisiología , Animales , Femenino , Masculino , Memoria/fisiología , Ratones , Bulbo Olfatorio/metabolismo , Percepción del Tamaño/fisiología
2.
Cell Rep Med ; 4(11): 101278, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37944529

RESUMEN

The choroid plexus (CP) plays a key role in remotely controlling brain function in health, aging, and disease. Here, we report that CP epithelial cells express the brain-specific cholesterol 24-hydroxylase (CYP46A1) and that its levels are decreased under different mouse and human brain conditions, including amyloidosis, aging, and SARS-CoV-2 infection. Using primary mouse CP cell cultures, we demonstrate that the enzymatic product of CYP46A1, 24(S)-hydroxycholesterol, downregulates inflammatory transcriptomic signatures within the CP, found here to be elevated across multiple neurological conditions. In vitro, the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) downregulates CYP46A1 expression, while overexpression of CYP46A1 or its pharmacological activation in mouse CP organ cultures increases resilience to TNF-α. In vivo, overexpression of CYP46A1 in the CP in transgenic mice with amyloidosis is associated with better cognitive performance and decreased brain inflammation. Our findings suggest that CYP46A1 expression in the CP impacts the role of this niche as a guardian of brain immune homeostasis.


Asunto(s)
Amiloidosis , Plexo Coroideo , Humanos , Ratones , Animales , Colesterol 24-Hidroxilasa/metabolismo , Plexo Coroideo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Encéfalo/patología , Homeostasis/fisiología , Ratones Transgénicos , Amiloidosis/metabolismo , Amiloidosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA