Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(2): 370-375, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28011764

RESUMEN

Glioblastoma multiforme (GBM) is an intractable tumor despite therapeutic advances, principally because of its invasive properties. Radiation is a staple in therapeutic regimens, although cells surviving radiation can become more aggressive and invasive. Subtraction hybridization identified melanoma differentiation-associated gene 9 [MDA-9/Syntenin; syndecan-binding protein (SDCBP)] as a differentially regulated gene associated with aggressive cancer phenotypes in melanoma. MDA-9/Syntenin, a highly conserved double-PDZ domain-containing scaffolding protein, is robustly expressed in human-derived GBM cell lines and patient samples, with expression increasing with tumor grade and correlating with shorter survival times and poorer response to radiotherapy. Knockdown of MDA-9/Syntenin sensitizes GBM cells to radiation, reducing postradiation invasion gains. Radiation induces Src and EGFRvIII signaling, which is abrogated through MDA-9/Syntenin down-regulation. A specific inhibitor of MDA-9/Syntenin activity, PDZ1i (113B7), identified through NMR-guided fragment-based drug design, inhibited MDA-9/Syntenin binding to EGFRvIII, which increased following radiation. Both genetic (shmda-9) and pharmacological (PDZ1i) targeting of MDA-9/Syntenin reduced invasion gains in GBM cells following radiation. Although not affecting normal astrocyte survival when combined with radiation, PDZ1i radiosensitized GBM cells. PDZ1i inhibited crucial GBM signaling involving FAK and mutant EGFR, EGFRvIII, and abrogated gains in secreted proteases, MMP-2 and MMP-9, following radiation. In an in vivo glioma model, PDZ1i resulted in smaller, less invasive tumors and enhanced survival. When combined with radiation, survival gains exceeded radiotherapy alone. MDA-9/Syntenin (SDCBP) provides a direct target for therapy of aggressive cancers such as GBM, and defined small-molecule inhibitors such as PDZ1i hold promise to advance targeted brain cancer therapy.


Asunto(s)
Glioblastoma/genética , Invasividad Neoplásica/genética , Sinteninas/genética , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Melanoma/genética , Ratones , Ratones Desnudos , Dominios PDZ/genética , Transducción de Señal/genética , Familia-src Quinasas/genética
2.
J Biol Chem ; 285(21): 16076-86, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20308072

RESUMEN

Ubiquitously expressed membrane type-1 matrix metalloproteinase (MT1-MMP), an archetype member of the MMP family, binds tissue inhibitor of metalloproteinases-2 (TIMP-2), activates matrix metalloproteinase-2 (MMP-2), and stimulates cell migration in various cell types. In contrast with MT1-MMP, the structurally similar MT6-MMP associates with the lipid raft compartment of the plasma membrane using a GPI anchor. As a result, MT6-MMP is functionally distinct from MT1-MMP. MT6-MMP is insufficiently characterized as yet. In addition, a number of its biochemical features are both conflicting and controversial. To reassess the biochemical features of MT6-MMP, we have expressed the MT6-MMP construct tagged with a FLAG tag in breast carcinoma MCF-7 and fibrosarcoma HT1080 cells. We then used phosphatidylinositol-specific phospholipase C to release MT6-MMP from the cell surface and characterized the solubilized MT6-MMP fractions. We now are confident that cellular MT6-MMP partially exists in its complex with TIMP-2. Both TIMP-1 and TIMP-2 are capable of inhibiting the proteolytic activity of MT6-MMP. MT6-MMP does not stimulate cell migration. MT6-MMP, however, generates a significant level of gelatinolysis of the fluorescein isothiocyanate-labeled gelatin and exhibits an intrinsic, albeit low, ability to activate MMP-2. As a result, it is exceedingly difficult to record the activation of MMP-2 by cellular MT6-MMP. Because of its lipid raft localization, cellular MT6-MMP is inefficiently internalized. MT6-MMP is predominantly localized in the cell-to-cell junctions. Because MT6-MMP has been suggested to play a role in disease, including cancer and autoimmune multiple sclerosis, the identity of its physiologically relevant cleavage targets remains to be determined.


Asunto(s)
Glicosilfosfatidilinositoles/metabolismo , Uniones Intercelulares/enzimología , Metaloproteinasas de la Matriz Asociadas a la Membrana/metabolismo , Microdominios de Membrana/enzimología , Complejos Multiproteicos/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Activación Enzimática , Proteínas Ligadas a GPI , Glicosilfosfatidilinositoles/genética , Humanos , Uniones Intercelulares/genética , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasas de la Matriz Asociadas a la Membrana/genética , Microdominios de Membrana/genética , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Complejos Multiproteicos/genética , Neoplasias/enzimología , Neoplasias/genética , Inhibidor Tisular de Metaloproteinasa-2/genética , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
3.
Curr Top Med Chem ; 15(20): 2032-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25986689

RESUMEN

In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications.


Asunto(s)
Descubrimiento de Drogas , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Receptor EphA4/química , Bibliotecas de Moléculas Pequeñas/química , Proteína Inhibidora de la Apoptosis Ligada a X/química , Técnicas Químicas Combinatorias , Cristalografía por Rayos X , Efrina-A5/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Péptidos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Receptor EphA4/antagonistas & inhibidores , Proteína Inhibidora de la Apoptosis Ligada a X/antagonistas & inhibidores
4.
Chem Biol ; 22(7): 876-887, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26165155

RESUMEN

The development of novel, targeted delivery agents for anti-cancer therapies requires the design and optimization of potent and selective tumor-targeting agents that are stable and amenable to conjugation with chemotherapeutic drugs. While short peptides represent potentially an excellent platform for these purposes, they often get degraded and are eliminated too rapidly in vivo. In this study, we used a combination of nuclear magnetic resonance-guided structure-activity relationships along with biochemical and cellular studies to derive a novel tumor-homing agent, named 123B9, targeting the EphA2 tyrosine kinase receptor ligand-binding domain. Conjugating 123B9 to the chemotherapeutic drug paclitaxel (PTX) via a stable linker results in an agent that is significantly more effective than the unconjugated drug in both a pancreatic cancer xenograft model and a melanoma lung colonization and metastases model. Hence, 123B9 could represent a promising strategy for the development of novel targeted therapies for cancer.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Paclitaxel/análogos & derivados , Receptor EphA2/agonistas , Secuencia de Aminoácidos , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Masculino , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones , Ratones Desnudos , Modelos Animales , Terapia Molecular Dirigida , Paclitaxel/química , Paclitaxel/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Ratas , Receptor EphA2/química , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Chem Biol ; 20(8): 973-82, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23891150

RESUMEN

The E3 ubiquitin ligase Siah regulates key cellular events that are central to cancer development and progression. A promising route to Siah inhibition is disrupting its interactions with adaptor proteins. However, typical of protein-protein interactions, traditional unbiased approaches to ligand discovery did not produce viable hits against this target, despite considerable effort and a multitude of approaches. Ultimately, a rational structure-based design strategy was successful for the identification of Siah inhibitors in which peptide binding drives specific covalent bond formation with the target. X-ray crystallography, mass spectrometry, and functional data demonstrate that these peptide mimetics are efficient covalent inhibitors of Siah and antagonize Siah-dependent regulation of Erk and Hif signaling in the cell. The proposed strategy may result useful as a general approach to the design of peptide-based inhibitors of other protein-protein interactions.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Proteínas Nucleares/antagonistas & inhibidores , Péptidos/química , Peptidomiméticos/química , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Péptidos/farmacología , Peptidomiméticos/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
6.
Chem Biol Drug Des ; 78(2): 211-23, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21564556

RESUMEN

It has been estimated that nearly one-third of functional proteins contain a metal ion. These constitute a wide variety of possible drug targets including metalloproteinases, dehydrogenases, oxidoreductases, hydrolases, deacetylases, or many others in which the metal ion is either of catalytic or of structural nature. Despite the predominant role of a metal ion in so many classes of drug targets, current high-throughput screening techniques do not usually produce viable hits against these proteins, likely due to the lack of proper metal-binding pharmacophores in the current screening libraries. Herein, we describe a novel fragment-based drug discovery approach using a metal-targeting fragment library that is based on a variety of distinct classes of metal-binding groups designed to reliably anchor the fragments at the target's metal ions. We show that the approach can effectively identify novel, potent and selective agents that can be readily developed into metalloprotein-targeted therapeutics.


Asunto(s)
Complejos de Coordinación/química , Sistemas de Liberación de Medicamentos , Metaloproteínas/química , Bibliotecas de Moléculas Pequeñas/química , Animales , Células Cultivadas , Complejos de Coordinación/síntesis química , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Fragmentos de Péptidos/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA