Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(2): 644-672, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36562730

RESUMEN

Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles. We corrected major misassemblies in previous versions and validated our assemblies via linkage analyses. Contiguity increased over ten-fold and >80% of filled gaps are within genes. We used Iso-Seq and deep RNA-seq datasets to improve structural annotations, and updated gene symbols and textual annotation of functionally characterized genes via extensive manual curation. We discovered that the cell wall-less classical reference strain CC-503 exhibits genomic instability potentially caused by deletion of the helicase RECQ3, with major structural mutations identified that affect >100 genes. We therefore present the CC-4532 assembly as the primary reference, although this strain also carries unique structural mutations and is experiencing rapid proliferation of a Gypsy retrotransposon. We expect all laboratory strains to harbor gene-disrupting mutations, which should be considered when interpreting and comparing experimental results. Collectively, the resources presented here herald a new era of Chlamydomonas genomics and will provide the foundation for continued research in this important reference organism.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/genética , Genómica/métodos , Mutación/genética , Reproducción , Chlamydomonas reinhardtii/genética
2.
Proc Natl Acad Sci U S A ; 120(30): e2305495120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459532

RESUMEN

Marine algae are responsible for half of the world's primary productivity, but this critical carbon sink is often constrained by insufficient iron. One species of marine algae, Dunaliella tertiolecta, is remarkable for its ability to maintain photosynthesis and thrive in low-iron environments. A related species, Dunaliella salina Bardawil, shares this attribute but is an extremophile found in hypersaline environments. To elucidate how algae manage their iron requirements, we produced high-quality genome assemblies and transcriptomes for both species to serve as a foundation for a comparative multiomics analysis. We identified a host of iron-uptake proteins in both species, including a massive expansion of transferrins and a unique family of siderophore-iron-uptake proteins. Complementing these multiple iron-uptake routes, ferredoxin functions as a large iron reservoir that can be released by induction of flavodoxin. Proteomic analysis revealed reduced investment in the photosynthetic apparatus coupled with remodeling of antenna proteins by dramatic iron-deficiency induction of TIDI1, which is closely related but identifiably distinct from the chlorophyll binding protein, LHCA3. These combinatorial iron scavenging and sparing strategies make Dunaliella unique among photosynthetic organisms.


Asunto(s)
Chlorophyceae , Extremófilos , Hierro/metabolismo , Multiómica , Proteómica , Fotosíntesis , Proteínas/metabolismo
3.
Plant Cell Environ ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351842

RESUMEN

Adaptation to abiotic stress is critical for the survival of perennial tree species. Salinity affects plant growth and productivity by interfering with major biosynthetic processes. Detrimental effects of salinity may vary between different plant tissues and cell types. However, spatial molecular mechanisms controlling plant responses to salinity stress are not yet thoroughly understood in perennial trees. We used laser capture microdissection in clones of Populus tremula x alba to isolate palisade and vascular cells of intermediary leaf from plants exposed to 150 mM NaCl for 10 days, followed by a recovery period. Cell-specific changes in proteins and metabolites were determined. Salinity induced a vascular-specific accumulation of proteins associated with photorespiration, and the accumulation of serine, 3-phosphoglycerate and NH4 + suggesting changes in N metabolism. Accumulation of the GLUTAMINE SYNTHETASE 2 protein, and increased GS1.1 gene expression, indicated that NH4 + produced in photorespiration was assimilated to glutamine, the main amino acid translocated in Populus trees. Further analysis of total soluble proteins in stems and roots showed the accumulation of bark storage proteins induced by the salinity treatments. Collectively, our results suggest that the salt-induced photorespiration in vascular cells mediates N-reallocation in Populus, an essential process for the adaptation of trees to adverse conditions.

4.
Nature ; 560(7716): 49-54, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013118

RESUMEN

As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.


Asunto(s)
Carbono/metabolismo , Congelación , Metagenoma/genética , Hielos Perennes/química , Hielos Perennes/microbiología , Microbiología del Suelo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Fermentación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Calentamiento Global , Metano/metabolismo , Polisacáridos/metabolismo , Suecia , Xilosa/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33906945

RESUMEN

Anaerobic fungi (class Neocallimastigomycetes) thrive as low-abundance members of the herbivore digestive tract. The genomes of anaerobic gut fungi are poorly characterized and have not been extensively mined for the biosynthetic enzymes of natural products such as antibiotics. Here, we investigate the potential of anaerobic gut fungi to synthesize natural products that could regulate membership within the gut microbiome. Complementary 'omics' approaches were combined to catalog the natural products of anaerobic gut fungi from four different representative species: Anaeromyces robustus (Arobustus), Caecomyces churrovis (Cchurrovis), Neocallimastix californiae (Ncaliforniae), and Piromyces finnis (Pfinnis). In total, 146 genes were identified that encode biosynthetic enzymes for diverse types of natural products, including nonribosomal peptide synthetases and polyketide synthases. In addition, N. californiae and C. churrovis genomes encoded seven putative bacteriocins, a class of antimicrobial peptides typically produced by bacteria. During standard laboratory growth on plant biomass or soluble substrates, 26% of total core biosynthetic genes in all four strains were transcribed. Across all four fungal strains, 30% of total biosynthetic gene products were detected via proteomics when grown on cellobiose. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of fungal supernatants detected 72 likely natural products from A. robustus alone. A compound produced by all four strains of anaerobic fungi was putatively identified as the polyketide-related styrylpyrone baumin. Molecular networking quantified similarities between tandem mass spectrometry (MS/MS) spectra among these fungi, enabling three groups of natural products to be identified that are unique to anaerobic fungi. Overall, these results support the finding that anaerobic gut fungi synthesize natural products, which could be harnessed as a source of antimicrobials, therapeutics, and other bioactive compounds.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Proteínas Fúngicas/aislamiento & purificación , Hongos/química , Proteómica , Anaerobiosis/genética , Productos Biológicos/química , Biomasa , Cromatografía Liquida , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Microbioma Gastrointestinal/genética , Lignina/química , Lignina/genética , Neocallimastigales/química , Neocallimastigales/genética , Neocallimastix/química , Neocallimastix/genética , Piromyces/química , Piromyces/genética , Espectrometría de Masas en Tándem
6.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33579822

RESUMEN

Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacement of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage.


Asunto(s)
Chlorophyta/genética , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Sistemas de Lectura Abierta , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , Transcripción Genética
7.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622792

RESUMEN

Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here, we employ 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems and furthermore establish a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts-a key step toward enabling a sustainable bioeconomy.


Asunto(s)
Hongos/metabolismo , Lignina/metabolismo , Redes y Vías Metabólicas , Biopolímeros/metabolismo , Biotransformación , Ecosistema , Compuestos Orgánicos/metabolismo , Microbiología del Suelo
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161254

RESUMEN

In this study, a suite of complementary environmental geochemical analyses, including NMR and gas chromatography-mass spectrometry (GC-MS) analyses of central metabolites, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) of secondary metabolites, and lipidomics, was used to investigate the influence of organic matter (OM) quality on the heterotrophic microbial mechanisms controlling peatland CO2, CH4, and CO2:CH4 porewater production ratios in response to climate warming. Our investigations leverage the Spruce and Peatland Responses under Changing Environments (SPRUCE) experiment, where air and peat warming were combined in a whole-ecosystem warming treatment. We hypothesized that warming would enhance the production of plant-derived metabolites, resulting in increased labile OM inputs to the surface peat, thereby enhancing microbial activity and greenhouse gas production. Because shallow peat is most susceptible to enhanced warming, increases in labile OM inputs to the surface, in particular, are likely to result in significant changes to CO2 and CH4 dynamics and methanogenic pathways. In support of this hypothesis, significant correlations were observed between metabolites and temperature consistent with increased availability of labile substrates, which may stimulate more rapid turnover of microbial proteins. An increase in the abundance of methanogenic genes in response to the increase in the abundance of labile substrates was accompanied by a shift toward acetoclastic and methylotrophic methanogenesis. Our results suggest that as peatland vegetation trends toward increasing vascular plant cover with warming, we can expect a concomitant shift toward increasingly methanogenic conditions and amplified climate-peatland feedbacks.


Asunto(s)
Ecosistema , Metaboloma , Picea/metabolismo , Suelo/química , Dióxido de Carbono/análisis , Ciclotrones , Cromatografía de Gases y Espectrometría de Masas , Iones , Isótopos/análisis , Lípidos/análisis , Espectroscopía de Resonancia Magnética , Metagenómica , Metano/análisis , Análisis Multivariante , Ácidos Nucleicos/genética , Oxidación-Reducción , Análisis de Componente Principal , Proteómica , ARN Ribosómico 16S/genética , Agua
9.
Proc Natl Acad Sci U S A ; 117(17): 9302-9310, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32245809

RESUMEN

Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic-catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.


Asunto(s)
Lignina/metabolismo , Pseudomonas putida/enzimología , Vesículas Secretoras/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Pseudomonas putida/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(6): 2374-2383, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659148

RESUMEN

The unicellular green alga Chlamydomonas reinhardtii displays metabolic flexibility in response to a changing environment. We analyzed expression patterns of its three genomes in cells grown under light-dark cycles. Nearly 85% of transcribed genes show differential expression, with different sets of transcripts being up-regulated over the course of the day to coordinate cellular growth before undergoing cell division. Parallel measurements of select metabolites and pigments, physiological parameters, and a subset of proteins allow us to infer metabolic events and to evaluate the impact of the transcriptome on the proteome. Among the findings are the observations that Chlamydomonas exhibits lower respiratory activity at night compared with the day; multiple fermentation pathways, some oxygen-sensitive, are expressed at night in aerated cultures; we propose that the ferredoxin, FDX9, is potentially the electron donor to hydrogenases. The light stress-responsive genes PSBS, LHCSR1, and LHCSR3 show an acute response to lights-on at dawn under abrupt dark-to-light transitions, while LHCSR3 genes also exhibit a later, second burst in expression in the middle of the day dependent on light intensity. Each response to light (acute and sustained) can be selectively activated under specific conditions. Our expression dataset, complemented with coexpression networks and metabolite profiling, should constitute an excellent resource for the algal and plant communities.


Asunto(s)
Chlamydomonas/genética , Chlamydomonas/metabolismo , Genómica , Metabolómica , Proteómica , División Celular , Replicación del ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Glucólisis , Metaboloma , Metabolómica/métodos , NAD/metabolismo , Oxidación-Reducción , Fotosíntesis/genética , Proteoma , Proteómica/métodos , Transducción de Señal , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 115(5): E1012-E1021, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339515

RESUMEN

Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems-based approach, we examined differential regulation of IFN-γ-dependent genes following infection with robust respiratory viruses including influenza viruses [A/influenza/Vietnam/1203/2004 (H5N1-VN1203) and A/influenza/California/04/2009 (H1N1-CA04)] and coronaviruses [severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV)]. Categorizing by function, we observed down-regulation of gene expression associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down-regulation of antigen-presentation gene expression, which was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation, rather than histone modification, plays a crucial role in MERS-CoV-mediated antagonism of antigen-presentation gene expression; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common mechanism utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.


Asunto(s)
Presentación de Antígeno , Epigénesis Genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Animales , Variación Antigénica , Línea Celular , Chlorocebus aethiops , Metilación de ADN , Perros , Regulación hacia Abajo , Histonas/química , Humanos , Células de Riñón Canino Madin Darby , Complejo Mayor de Histocompatibilidad , Mutación , Sistemas de Lectura Abierta , Proteómica , Células Vero
12.
Chem Res Toxicol ; 33(2): 414-425, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31872761

RESUMEN

Acute and chronic exposures to organophosphates (OPs), including agricultural pesticides, industrial chemicals, and chemical warfare agents, remain a significant worldwide health risk. The mechanisms by which OPs alter development and cognition in exposed individuals remain poorly understood, in part due to the large number of structurally diverse OPs and the wide range of affected proteins and signaling pathways. To investigate the influence of structure on OP targets in mammalian systems, we have developed a series of probes for activity-based protein profiling (ABPP) featuring two distinct reactive groups that mimic OP chemical reactivity. FOP features a fluorophosphonate moiety, and PODA and CODA utilize a dialkynyl phosphate ester; both reactive group types target serine hydrolase activity. As the oxon represents the highly reactive and toxic functional group of many OPs, the new probes described herein enhance our understanding of tissue-specific reactivity of OPs. Chemoproteomic analysis of mouse tissues treated with the probes revealed divergent protein profiles, demonstrating the influence of probe structure on protein targeting. These targets also vary in sensitivity toward different OPs. The simultaneous use of multiple probes in ABPP experiments may therefore offer more comprehensive coverage of OP targets; FOP consistently labeled more targets in both brain and liver than PODA or CODA, suggesting the dialkyne warhead is more selective for enzymes in major signaling pathways than the more reactive fluorophosphonate warhead. Additionally, the probes can be used to assess reactivation of OP-inhibited enzymes by N-oximes and may serve as diagnostic tools for screening of therapeutic candidates in a panel of protein targets. These applications will help clarify the short- and long-term effects of OP toxicity beyond acetylcholinesterase inhibition, investigate potential points of convergence for broad spectrum therapeutic development, and support future efforts to screen candidate molecules for efficacy in various model systems.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Hígado/efectos de los fármacos , Organofosfatos/farmacología , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Hígado/metabolismo , Ratones , Estructura Molecular , Organofosfatos/química
13.
Plant J ; 93(3): 545-565, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29172250

RESUMEN

Chlamydomonas reinhardtii is a unicellular chlorophyte alga that is widely studied as a reference organism for understanding photosynthesis, sensory and motile cilia, and for development of an algal-based platform for producing biofuels and bio-products. Its highly repetitive, ~205-kbp circular chloroplast genome and ~15.8-kbp linear mitochondrial genome were sequenced prior to the advent of high-throughput sequencing technologies. Here, high coverage shotgun sequencing was used to assemble both organellar genomes de novo. These new genomes correct dozens of errors in the prior genome sequences and annotations. Genome sequencing coverage indicates that each cell contains on average 83 copies of the chloroplast genome and 130 copies of the mitochondrial genome. Using protocols and analyses optimized for organellar transcripts, RNA-Seq was used to quantify their relative abundances across 12 different growth conditions. Forty-six percent of total cellular mRNA is attributable to high expression from a few dozen chloroplast genes. RNA-Seq data were used to guide gene annotation, to demonstrate polycistronic gene expression, and to quantify splicing of psaA and psbA introns. In contrast to a conclusion from a recent study, we found that chloroplast transcripts are not edited. Unexpectedly, cytosine-rich polynucleotide tails were observed at the 3'-end of all mitochondrial transcripts. A comparative genomics analysis of eight laboratory strains and 11 wild isolates of C. reinhardtii identified 2658 variants in the organellar genomes, which is 1/10th as much genetic diversity as is found in the nucleus.


Asunto(s)
Chlamydomonas reinhardtii/genética , ADN Mitocondrial/genética , Genoma del Cloroplasto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Chlamydomonas reinhardtii/citología , Edición Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica/métodos , Anotación de Secuencia Molecular , Orgánulos/genética , Empalme del ARN , Análisis de Secuencia de ARN/métodos
14.
Appl Environ Microbiol ; 85(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30979840

RESUMEN

Bacterial Halanaerobium strains become the dominant persisting microbial community member in produced fluids across geographically distinct hydraulically fractured shales. Halanaerobium is believed to be inadvertently introduced into this environment during the drilling and fracturing process and must therefore tolerate large changes in pressure, temperature, and salinity. Here, we used a Halanaerobium strain isolated from a natural gas well in the Utica Point Pleasant formation to investigate metabolic and physiological responses to growth under high-pressure subsurface conditions. Laboratory incubations confirmed the ability of Halanaerobium congolense strain WG8 to grow under pressures representative of deep shale formations (21 to 48 MPa). Under these conditions, broad metabolic and physiological shifts were identified, including higher abundances of proteins associated with the production of extracellular polymeric substances. Confocal laser scanning microscopy indicated that extracellular polymeric substance (EPS) production was associated with greater cell aggregation when biomass was cultured at high pressure. Changes in Halanaerobium central carbon metabolism under the same conditions were inferred from nuclear magnetic resonance (NMR) and gas chromatography measurements, revealing large per-cell increases in production of ethanol, acetate, and propanol and cessation of hydrogen production. These metabolic shifts were associated with carbon flux through 1,2-propanediol in response to slower fluxes of carbon through stage 3 of glycolysis. Together, these results reveal the potential for bioclogging and corrosion (via organic acid fermentation products) associated with persistent Halanaerobium growth in deep, hydraulically fractured shale ecosystems, and offer new insights into cellular mechanisms that enable these strains to dominate deep-shale microbiomes.IMPORTANCE The hydraulic fracturing of deep-shale formations for hydrocarbon recovery accounts for approximately 60% of U.S. natural gas production. Microbial activity associated with this process is generally considered deleterious due to issues associated with sulfide production, microbially induced corrosion, and bioclogging in the subsurface. Here we demonstrate that a representative Halanaerobium species, frequently the dominant microbial taxon in hydraulically fractured shales, responds to pressures characteristic of the deep subsurface by shifting its metabolism to generate more corrosive organic acids and produce more polymeric substances that cause "clumping" of biomass. While the potential for increased corrosion of steel infrastructure and clogging of pores and fractures in the subsurface may significantly impact hydrocarbon recovery, these data also offer new insights for microbial control in these ecosystems.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas/metabolismo , Firmicutes/metabolismo , Fracking Hidráulico , Presión
15.
Environ Microbiol ; 20(11): 4141-4156, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30246402

RESUMEN

White-rot fungi, such as Dichomitus squalens, degrade all wood components and inhabit mixed-wood forests containing both soft- and hardwood species. In this study, we evaluated how D. squalens responded to the compositional differences in softwood [guaiacyl (G) lignin and higher mannan content] and hardwood [syringyl/guaiacyl (S/G) lignin and higher xylan content] using semi-natural solid cultures. Spruce (softwood) and birch (hardwood) sticks were degraded by D. squalens as measured by oxidation of the lignins using 2D-NMR. The fungal response as measured by transcriptomics, proteomics and enzyme activities showed a partial tailoring to wood composition. Mannanolytic transcripts and proteins were more abundant in spruce cultures, while a proportionally higher xylanolytic activity was detected in birch cultures. Both wood types induced manganese peroxidases to a much higher level than laccases, but higher transcript and protein levels of the manganese peroxidases were observed on the G-lignin rich spruce. Overall, the molecular responses demonstrated a stronger adaptation to the spruce rather than birch composition, possibly because D. squalens is mainly found degrading softwoods in nature, which supports the ability of the solid wood cultures to reflect the natural environment.


Asunto(s)
Basidiomycota/metabolismo , Polyporaceae/metabolismo , Madera/química , Basidiomycota/enzimología , Basidiomycota/genética , Betula/química , Betula/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lacasa/genética , Lacasa/metabolismo , Lignina/química , Lignina/metabolismo , Mananos/química , Mananos/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Picea/química , Picea/microbiología , Madera/microbiología
16.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29884760

RESUMEN

Wood-degrading fungi use a sequence of oxidative and hydrolytic mechanisms to loosen lignocellulose and then release and metabolize embedded sugars. These temporal sequences have recently been mapped at high resolution using directional growth on wood wafers, revealing previously obscured dynamics as fungi progressively colonize wood. Here, we applied secretomics in the same wafer design to track temporal trends on aspen decayed by fungi with distinct nutritional modes: two brown rot (BR) fungi (Postia placenta and Gloeophyllum trabeum) and two white rot (WR) fungi (Stereum hirsutum and Trametes versicolor). We matched secretomic data from three zones of decay (early, middle, and late) with enzyme activities in these zones, and we included measures of total protein and ergosterol as measures of fungal biomass. In line with previous transcriptomics data, the fungi tested showed an initial investment in pectinases and a delayed investment in glycoside hydrolases (GHs). Brown rot fungi also staggered the abundance of some oxidoreductases ahead of GHs to produce a familiar two-step mechanism. White rot fungi, however, showed late-stage investment in pectinases as well, unlike brown rot fungi. Ligninolytic enzyme activities and abundances were also different between the two white rot fungi. Specifically, S. hirsutum ligninolytic activity was delayed, which was explained almost entirely by the activity and abundance of five atypical manganese peroxidases, unlike more varied peroxidases and laccases in T. versicolor These secretomic analyses support brown rot patterns generated via transcriptomics, they reveal distinct patterns among and within rot types, and they link spectral counts with activities to help functionalize these multistrain secretomic data.IMPORTANCE Wood decay, driven primarily by wood-degrading basidiomycetes, is an essential component of global carbon cycles, and decay mechanisms are essential for understanding forest ecosystem function. These fungi efficiently consolidate pretreatment and saccharification of wood under mild conditions, making them promising templates for low-cost lignocellulose conversion. Species are categorized as ligninolytic white rots and polysaccharide-selective brown rots, with considerable undescribed variability in decay mechanism that may manifest in the sequential variation in protein secretion over the progression of decay. Here we resolved spatially a temporal progression of decay on intact wood wafers and compared secretome dynamics in two white and two brown rot fungi. We identified several universal mechanistic components among decay types, including early pectinolytic "pretreatment" and later-stage glycoside hydrolase-mediated saccharification. Interspecific comparisons also identified considerable mechanistic diversity within rot types, indicating that there are multiple avenues to facilitate white and brown rots.


Asunto(s)
Agaricales/enzimología , Madera/metabolismo , Madera/microbiología , Biomasa , Glicósido Hidrolasas , Hidrólisis , Lignina/metabolismo , Oxidación-Reducción , Filogenia
17.
Mol Cell Proteomics ; 15(12): 3694-3705, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27670688

RESUMEN

Current proteomic approaches include both broad discovery measurements and quantitative targeted analyses. In many cases, discovery measurements are initially used to identify potentially important proteins (e.g. candidate biomarkers) and then targeted studies are employed to quantify a limited number of selected proteins. Both approaches, however, suffer from limitations. Discovery measurements aim to sample the whole proteome but have lower sensitivity, accuracy, and quantitation precision than targeted approaches, whereas targeted measurements are significantly more sensitive but only sample a limited portion of the proteome. Herein, we describe a new approach that performs both discovery and targeted monitoring (DTM) in a single analysis by combining liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled target peptides are spiked into tryptic digests and both the labeled and unlabeled peptides are detected using LC-IMS-MS instrumentation. Compared with the broad LC-MS discovery measurements, DTM yields greater peptide/protein coverage and detects lower abundance species. DTM also achieved detection limits similar to selected reaction monitoring (SRM) indicating its potential for combined high quality discovery and targeted analyses, which is a significant step toward the convergence of discovery and targeted approaches.


Asunto(s)
Neoplasias de la Mama/metabolismo , Péptidos/análisis , Proteoma/aislamiento & purificación , Proteómica/métodos , Animales , Cromatografía Liquida/métodos , Femenino , Humanos , Espectrometría de Masas/métodos , Ratones , Trasplante de Neoplasias
18.
J Am Chem Soc ; 139(45): 16032-16035, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29068682

RESUMEN

Glutathione S-transferases (GSTs) comprise a diverse family of phase II drug metabolizing enzymes whose shared function is the conjugation of reduced glutathione (GSH) to endo- and xenobiotics. Although the conglomerate activity of these enzymes can be measured, the isoform-specific contribution to the metabolism of xenobiotics in complex biological samples has not been possible. We have developed two activity-based probes (ABPs) that characterize active GSTs in mammalian tissues. The GST active site is composed of a GSH binding "G site" and a substrate binding "H site". Therefore, we developed (1) a GSH-based photoaffinity probe (GSTABP-G) to target the "G site", and (2) an ABP designed to mimic a substrate molecule and have "H site" activity (GSTABP-H). The GSTABP-G features a photoreactive moiety for UV-induced covalent binding to GSTs and GSH-binding enzymes. The GSTABP-H is a derivative of a known mechanism-based GST inhibitor that binds within the active site and inhibits GST activity. Validation of probe targets and "G" and "H" site specificity was carried out using a series of competition experiments in the liver. Herein, we present robust tools for the characterization of enzyme- and active site-specific GST activity in mammalian model systems.


Asunto(s)
Glutatión Transferasa/metabolismo , Etiquetas de Fotoafinidad/metabolismo , Animales , Sitios de Unión , Dominio Catalítico , Glutatión/metabolismo , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/química , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Hígado/enzimología , Pulmón/enzimología , Ratones , Etiquetas de Fotoafinidad/química , Unión Proteica
19.
Fungal Genet Biol ; 106: 61-75, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28676260

RESUMEN

Fungi generate a wide range of extracellular hydrolytic and oxidative enzymes and reactive metabolites, collectively known as the secretome, that synergistically drive plant litter decomposition in the environment. While secretome studies of model organisms have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates, particularly filamentous Ascomycetes, or directly compared temporal patterns of enzyme utilization among diverse species. Thus, the mechanisms of carbon (C) degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of iTRAQ proteomics and extracellular enzyme activity assays to compare the protein composition of the secretomes of four manganese(II)-oxidizing Ascomycete fungi over a three-week time course. We demonstrate that the fungi exhibit striking differences in the regulation of extracellular lignocellulose-degrading enzymes among species and over time, revealing species-specific and temporal shifts in C utilization strategies as they degrade the same substrate. Specifically, our findings suggest that Alternaria alternata SRC1lrK2f and Paraconiothyrium sporulosum AP3s5-JAC2a employ sequential enzyme secretion patterns concomitant with decreasing resource availability. Stagonospora sp. SRC1lsM3a preferentially degrades proteinaceous substrate before switching to carbohydrates, and Pyrenochaeta sp. DS3sAY3a utilizes primarily peptidases to aggressively attack carbon sources in a concentrated burst. This work highlights the diversity of operative metabolic strategies among understudied yet ubiquitous cellulose-degrading Ascomycetes, enhancing our understanding of their contribution to C turnover in the environment.


Asunto(s)
Ascomicetos/enzimología , Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Manganeso/metabolismo , Proteómica/métodos , Análisis de Varianza , Hidrólisis , Lignina/metabolismo , Plantas/microbiología , Especificidad de la Especie
20.
BMC Genomics ; 17: 138, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26911370

RESUMEN

BACKGROUND: Yarrowia lipolytica is an oleaginous ascomycete yeast that stores lipids in response to limitation of nitrogen. While the enzymatic pathways responsible for neutral lipid accumulation in Y. lipolytica are well characterized, regulation of these pathways has received little attention. We therefore sought to characterize the response to nitrogen limitation at system-wide levels, including the proteome, phosphoproteome and metabolome, to better understand how this organism regulates and controls lipid metabolism and to identify targets that may be manipulated to improve lipid yield. RESULTS: We found that ribosome structural genes are down-regulated under nitrogen limitation, during which nitrogen containing compounds (alanine, putrescine, spermidine and urea) are depleted and sugar alcohols and TCA cycle intermediates accumulate (citrate, fumarate and malate). We identified 1219 novel phosphorylation sites in Y. lipolytica, 133 of which change in their abundance during nitrogen limitation. Regulatory proteins, including kinases and DNA binding proteins, are particularly enriched for phosphorylation. Within lipid synthesis pathways, we found that ATP-citrate lyase, acetyl-CoA carboxylase and lecithin cholesterol acyl transferase are phosphorylated during nitrogen limitation while many of the proteins involved in ß-oxidation are down-regulated, suggesting that storage lipid accumulation may be regulated by phosphorylation of key enzymes. Further, we identified short DNA elements that associate specific transcription factor families with up- and down-regulated genes. CONCLUSIONS: Integration of metabolome, proteome and phosphoproteome data identifies lipid accumulation in response to nitrogen limitation as a two-fold result of increased production of acetyl-CoA from excess citrate and decreased capacity for ß-oxidation.


Asunto(s)
Metabolismo de los Lípidos , Nitrógeno/metabolismo , Yarrowia/metabolismo , Acetilcoenzima A/metabolismo , Ácido Cítrico/metabolismo , ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Metaboloma , Oxidación-Reducción , Fosforilación , Proteoma , Yarrowia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA