RESUMEN
Human serum albumin (HSA) is the major copper (Cu) carrier in blood. The majority of previous studies that have investigated Cu interactions with HSA have focused primarily on the Cu(II) oxidation state. Yet, cellular Cu uptake by the human copper transport protein (Ctr1), a plasma membrane-embedded protein responsible for Cu uptake into cells, requires Cu(I). Recent in vitro work has determined that reducing agents, such as the ascorbate present in blood, are sufficient to reduce the Cu(II)HSA complex to form Cu(I)HSA and that Cu(I) is bound to HSA with pM affinity. The biological accessibility of Cu(I)HSA suggests that HSA-bound Cu(I) may be an unappreciated form of Cu cargo and a key player in extracellular Cu trafficking. To better understand Cu trafficking by HSA, we sought to investigate the exchange of Cu(I) from HSA to a model peptide of the Cu-binding ectodomain of Ctr1. In this study, we used X-ray absorption near-edge spectroscopy to show that Cu(I) becomes more highly coordinated as increasing amounts of the Ctr1-14 model peptide are added to a solution of Cu(I)HSA. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to further characterize the interaction of Cu(I)HSA with Ctr1-14 by determining the ligands coordinating Cu(I) and their bond lengths. The EXAFS data support that some Cu(I) likely undergoes complete transfer from HSA to Ctr1-14. This finding of HSA interacting with and releasing Cu(I) to an ectodomain model peptide of Ctr1 suggests a mechanism by which HSA delivers Cu(I) to cells under physiological conditions.
Asunto(s)
Albúmina Sérica Humana , Albúmina Sérica , Humanos , Albúmina Sérica Humana/metabolismo , Péptidos/química , Transporte Biológico , Oxidación-Reducción , Cobre/químicaRESUMEN
OBJECTIVE: Multiple sclerosis (MS) is a heterogeneous inflammatory demyelinating disease. Iron distribution is altered in MS patients' brains, suggesting iron liberation within active lesions amplifies demyelination and neurodegeneration. Whether the amount and distribution of iron are similar or different among different MS immunopatterns is currently unknown. METHODS: We used synchrotron X-ray fluorescence imaging, histology, and immunohistochemistry to compare the iron quantity and distribution between immunopattern II and III early active MS lesions. We analyzed archival autopsy and biopsy tissue from 21 MS patients. RESULTS: Immunopattern II early active lesions contain 64% more iron (95% confidence interval [CI] = 17-127%, p = 0.004) than immunopattern III lesions, and 30% more iron than the surrounding periplaque white matter (95% CI = 3-64%, p = 0.03). Iron in immunopattern III lesions is 28% lower than in the periplaque white matter (95% CI = -40 to -14%, p < 0.001). When normalizing the iron content of early active lesions to that of surrounding periplaque white matter, the ratio is significantly higher in immunopattern II (p < 0.001). Microfocused X-ray fluorescence imaging shows that iron in immunopattern II lesions localizes to macrophages, whereas macrophages in immunopattern III lesions contain little iron. INTERPRETATION: Iron distribution and content are heterogeneous in early active MS lesions. Iron accumulates in macrophages in immunopattern II, but not immunopattern III lesions. This heterogeneity in the two most common MS immunopatterns may be explained by different macrophage polarization, origin, or different demyelination mechanisms, and paves the way for developing new or using existing iron-sensitive magnetic resonance imaging techniques to differentiate among immunopatterns in the general nonbiopsied MS patient population. ANN NEUROL 2021;89:498-510.
Asunto(s)
Encéfalo/metabolismo , Hierro/metabolismo , Esclerosis Múltiple/metabolismo , Adolescente , Adulto , Anciano , Apoferritinas/metabolismo , Apoptosis , Encéfalo/inmunología , Encéfalo/patología , Niño , Proteínas del Sistema Complemento/metabolismo , Femenino , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Humanos , Inmunoglobulinas/metabolismo , Inmunohistoquímica , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Proteínas de la Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Oligodendroglía/metabolismo , Imagen Óptica , Espectrometría por Rayos X , Sincrotrones , Adulto JovenRESUMEN
Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid ß (Aß) peptide is central to disease pathology, which is supported by elevated Aß levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aß, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aß(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered â¼83% of the Cu(II) from Aß(1-42), whereas PBT2 sequestered only â¼59% of the Cu(II) from Aß(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aß(1-42) species in solution, leaving a single Cu(II)Aß(1-42) species. It follows that the Cu(II) site in this Cu(II)Aß(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aß(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aß(1-42).
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Clioquinol , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/química , Quelantes/farmacología , Quelantes/uso terapéutico , Clioquinol/análogos & derivados , Clioquinol/química , Cobre/química , Humanos , Iones , Metales , Oxiquinolina/química , Oxiquinolina/farmacología , Fragmentos de Péptidos , Solventes , ZincRESUMEN
Visualising direct biochemical markers of cell physiology and disease pathology at the sub-cellular level is an ongoing challenge in the biological sciences. A suite of microscopies exists to either visualise sub-cellular architecture or to indirectly view biochemical markers (e.g. histochemistry), but further technique developments and innovations are required to increase the range of biochemical parameters that can be imaged directly, in situ, within cells and tissue. Here, we report our continued advancements in the application of synchrotron radiation attenuated total reflectance Fourier transform infrared (SR-ATR-FTIR) microspectroscopy to study sub-cellular biochemistry. Our recent applications demonstrate the much needed capability to map or image directly sub-cellular protein aggregates within degenerating neurons as well as lipid inclusions within bacterial cells. We also characterise the effect of spectral acquisition parameters on speed of data collection and the associated trade-offs between a realistic experimental time frame and spectral/image quality. Specifically, the study highlights that the choice of 8 cm-1 spectral resolutions provide a suitable trade-off between spectral quality and collection time, enabling identification of important spectroscopic markers, while increasing image acquisition by â¼30% (relative to 4 cm-1 spectral resolution). Further, this study explores coupling a focal plane array detector with SR-ATR-FTIR, revealing a modest time improvement in image acquisition time (factor of 2.8). Such information continues to lay the foundation for these spectroscopic methods to be readily available for, and adopted by, the biological science community to facilitate new interdisciplinary endeavours to unravel complex biochemical questions and expand emerging areas of study.
Asunto(s)
Agregado de Proteínas , Sincrotrones , Lípidos , Proteínas , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Amyloid beta (Aß) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aß peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aß peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aß1-16 and Aß4-16 peptides as well-established non-aggregating models of major Aß species in healthy and AD brains, and the Ctr1-14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aß peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aß1-16 fully and rapidly delivered Cu(II) to Ctr1-14 along the affinity gradient. Such delivery was only partial for the Aß4-16/Ctr1-14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aß species released Cu(I) to Ctr1-14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aß model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aß1-16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aß4-16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aß peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Péptidos beta-Amiloides/química , Cobre/química , Transportador de Cobre 1/química , Humanos , Espectrometría de FluorescenciaRESUMEN
8-Hydroxyquinolines (8HQs) are a family of lipophilic metal ion chelators that have been used in a range of analytical and pharmaceutical applications over the last 100 years. More recently, CQ (clioquinol; 5-chloro-7-iodo-8-hydroxyquinoline) and PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) have undergone clinical trials for the treatment of Alzheimer's disease and Huntington's disease. Because CQ and PBT2 appear to redistribute metals into cells, these compounds have been redefined as copper and zinc ionophores. Despite the attention surrounding the clinical trials and the clear link between 8HQs and metals, the fundamental solution chemistry of how these compounds bind divalent metals such as copper and zinc, as well as their mechanism(s) of action in mammalian systems, remains poorly understood. In this study, we used a combination of X-ray absorption spectroscopy (XAS), high-energy resolution fluorescence detected (HERFD) XAS, electron paramagnetic resonance (EPR), and UV-visible absorption spectroscopies to investigate the aqueous solution chemistry of a range of 8HQ derivatives. To circumvent the known solubility issues with 8HQ compounds and their complexes with Cu(II), and to avoid the use of abiological organic solvents, we have devised a surfactant buffer system to investigate these Cu(II) complexes in aqueous solution. Our study comprises the first comprehensive investigation of the Cu(II) complexes formed with many 8HQs of interest in aqueous solution, and it provides the first structural information on some of these complexes. We find that halogen substitutions in 8HQ derivatives appear to have little effect on the Cu(II) coordination environment; 5,7-dihalogenated 8HQ conformers all have a pseudo square planar Cu(II) bound by two quinolin-8-olate anions, in agreement with previous studies. Conversely, substituents in the 2-position of the 8HQ moiety appear to cause significant distortions from the typical square-planar-like coordination of most Cu(II)-bis-8HQ complexes, such that the 8HQ moieties in the Cu(II)-bis-8HQ complex are rotated approximately 30-40° apart in a "propeller-like" arrangement.
RESUMEN
The amyloid-ß (Aß) peptide is a cleavage product of the amyloid precursor protein and has been implicated as a central player in Alzheimer's disease. The N-terminal end of Aß is variable, and different proportions of these variable-length Aß peptides are present in healthy individuals and those with the disease. The N-terminally truncated form of Aß starting at position 4 (Aß4-x) has a His residue as the third amino acid (His6 using the formal Aß numbering). The N-terminal sequence Xaa-Xaa-His is known as an amino terminal copper and nickel binding motif (ATCUN), which avidly binds Cu(II). This motif is not present in the commonly studied Aß1-x peptides. In addition to the ATCUN site, Aß4-x contains an additional metal binding site located at the tandem His residues (bis-His at His13 and 14) which is also found in other isoforms of Aß. Using the ATCUN and bis-His motifs, the Aß4-x peptide is capable of binding multiple metal ions simultaneously. We confirm that Cu(II) bound to this particular ATCUN site is redox silent, but the second Cu(II) site is redox active and can be readily reduced with ascorbate. We have employed surrogate metal ions to block copper coordination at the ATCUN or the tandem His site in order to isolate spectral features of the copper coordination environment for structural characterization using extended X-ray absorption fine structure (EXAFS) spectroscopy. This approach reveals that each copper coordination environment is independent in the Cu2Aß4-x state. The identification of two functionally different copper binding environments within the Aß4-x sequence may have important implications for this peptide in vivo.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Cobre/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Sitios de Unión , Cobre/química , Humanos , Modelos Moleculares , Oxidación-Reducción , Fragmentos de Péptidos/química , Unión ProteicaRESUMEN
Synchrotron X-ray fluorescence imaging enables visualization and quantification of microscopic distributions of elements. This versatile technique has matured to the point where it is used in a wide range of research fields. The method can be used to quantitate the levels of different elements in the image on a pixel-by-pixel basis. Two approaches to X-ray fluorescence image analysis are commonly used, namely, (i) integrative analysis, or window binning, which simply sums the numbers of all photons detected within a specific energy region of interest; and (ii) parametric analysis, or fitting, in which emission spectra are represented by the sum of parameters representing a series of peaks and other contributing factors. This paper presents a quantitative comparison between these two methods of image analysis using X-ray fluorescence imaging of mouse brain-tissue sections; it is shown that substantial errors can result when data from overlapping emission lines are binned rather than fitted. These differences are explored using two different digital signal processing data-acquisition systems with different count-rate and emission-line resolution characteristics. Irrespective of the digital signal processing electronics, there are substantial differences in quantitation between the two approaches. Binning analyses are thus shown to contain significant errors that not only distort the data but in some cases result in complete reversal of trends between different tissue regions.
RESUMEN
Human serum albumin (HSA) is a major Cu carrier in human blood and in cerebrospinal fluid. A major assumption is that Cu bound to HSA is in the Cu(II) oxidation state; thus, interactions between HSA and Cu(II) have been intensely investigated for over four decades. HSA has been reported previously to support the reduction of Cu(II) to the Cu(I) oxidation state in the presence of the weak reductant, ascorbate; however, the interactions between HSA and Cu(I) have not been explicitly investigated. Here, we characterize both the apparent affinity of HSA for Cu(I) using solution competition experiments and the coordination structure of Cu(I) bound to HSA using X-ray absorption spectroscopy and in silico modeling. We find that HSA binds to Cu(I) at pH 7.4 with an apparent conditional affinity of KCu(I):HSA = 1014.0 using digonal coordination in a structure that is similar to the bis-His coordination modes characterized for amyloid beta (Aß) and the prion protein. This high affinity and familiar Cu(I) coordination structure suggests that Cu(I) interaction with HSA in human extracellular fluids is unappreciated in the current scientific literature.
Asunto(s)
Cobre/metabolismo , Albúmina Sérica Humana/metabolismo , Ácido Ascórbico/metabolismo , Sitios de Unión , Transporte Biológico , Cobre/química , Humanos , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Albúmina Sérica Humana/química , Espectroscopía de Absorción de Rayos XRESUMEN
Trifluoroselenomethionine (TFSeM), a new unnatural amino acid, was synthesized in seven steps from N-(tert-butoxycarbonyl)-l-aspartic acid tert-butyl ester. TFSeM shows enhanced methioninase-induced cytotoxicity, relative to selenomethionine (SeM), toward HCT-116 cells derived from human colon cancer. Mechanistic explanations for this enhanced activity are computationally and experimentally examined. Comparison of TFSeM and SeM by selenium EXAFS and DFT calculations showed them to be spectroscopically and structurally very similar. Nonetheless, when two different variants of the protein GB1 were expressed in an Escherichia coli methionine auxotroph cell line in the presence of TFSeM and methionine (Met) in a 9:1 molar ratio, it was found that, surprisingly, 85 % of the proteins contained SeM residues, even though no SeM had been added, thus implying loss of the trifluoromethyl group from TFSeM. The transformation of TFSeM into SeM is enzymatically catalyzed by E.â coli extracts, but TFSeM is not a substrate of E.â coli methionine adenosyltransferase.
Asunto(s)
Aminoácidos/química , Selenometionina/análogos & derivados , Aminoácidos/síntesis química , Aminoácidos/farmacología , Liasas de Carbono-Azufre/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HCT116 , Humanos , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Selenometionina/síntesis química , Selenometionina/química , Selenometionina/farmacología , Relación Estructura-ActividadRESUMEN
Sulfur K-edge X-ray absorption spectroscopy increasingly is used as a tool to provide speciation information about the sulfur chemical form in complex samples, with applications ranging from fossil fuels to soil science to health research. As part of an ongoing program of systematic investigations of the factors that affect the variability of sulfur K near-edge spectra, we have examined the X-ray absorption spectra of a series of organic symmetric disulfide compounds. We have used polarized sulfur K-edge spectra of single crystals of dibenzyl disulfide to confirm the assignments of the major transitions in the spectrum as 1s â (S-S)σ* and 1s â (S-C)σ*. We also have examined the solution spectra of an extended series of disulfides and show that the spectra change in a systematic and predictable manner with the nature of the external group.
RESUMEN
Thiophenes are the simplest aromatic sulfur-containing compounds; they are widespread in fossil fuels and a variety of natural products, and they have vital roles in determining characteristic aromas that are important in food chemistry. We used a combination of sulfur K-edge X-ray absorption spectroscopy and density functional theory to investigate the chemical bonding in the novel sulfur-containing heterocycle thiophene-2-thiol. We show that solutions of thiophene-2-thiol contain significant quantities of the thione tautomer, which may be the energetically preferred 5H-thiophene-2-thione or the more accessible 3H-thiophene-2-thione.
Asunto(s)
Tiofenos/química , Espectroscopía de Absorción de Rayos X , Simulación por Computador , Modelos Químicos , Estructura Molecular , Soluciones/química , Azufre/químicaRESUMEN
Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.
Asunto(s)
Proteínas de Transporte de Catión/química , Cobre/química , Histidina/química , Metionina/química , Péptidos/química , Sitios de Unión , Transportador de Cobre 1 , Humanos , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Espectroscopía de Absorción de Rayos XRESUMEN
The metal-coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of its interaction with copper just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, but structural details of the various metal coordination modes have not been fully elucidated in some cases. In the present study, we have employed X-ray absorption near-edge spectroscopy as well as extended X-ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for Cu(II) , Cu(I) , and Zn(II) with an N-terminal fragment of PrP. The PrP fragment corresponds to four tandem repeats representative of the mammalian octarepeat domain, designated as OR4 , which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations have provided additional structural and thermodynamic data, and candidate structures have been used to inform EXAFS data analysis. The optimized geometries from DFT calculations have been used to identify potential coordination complexes for multi-histidine coordination of Cu(II) , Cu(I) , and Zn(II) in an aqueous medium, modelled using 4-methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve-fitting, using full multiple scattering on candidate structures derived from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of Cu(II) , Cu(I) , and Zn(II) with the OR4 peptide at pHâ 7.4 at atomic resolution, which are best represented as square-planar [Cu(II) (His)4 ](2+) , digonal [Cu(I) (His)2 ](+) , and tetrahedral [Zn(II) (His)3 (OH2 )](2+) , respectively.
Asunto(s)
Complejos de Coordinación/química , Cobre/química , Histidina/análogos & derivados , Priones/química , Zinc/química , Secuencia de Aminoácidos , Animales , Histidina/química , Humanos , Mamíferos , Modelos Moleculares , Datos de Secuencia Molecular , Espectroscopía de Absorción de Rayos X/métodosRESUMEN
Element dysregulation is a pathophysiologic hallmark of ischemic stroke. Prior characterization of post-stroke element dysregulation in the photothrombotic model demonstrated significant element changes for ions that are essential for the function of the neurovascular unit. To characterize the dynamic changes during the early hyperacute phase (<6 h), we employed a temporary large-vessel occlusion stroke model. The middle cerebral artery was temporarily occluded for 30 min in male C57BL/6 mice, and coronal brain sections were prepared for histology and X-ray fluorescence microscopy from 5 to 120 min post-reperfusion. Ion dysregulation was already apparent by 5 min post-reperfusion, evidenced by reduced total potassium in the lesion. Later time points showed further dysregulation of phosphorus, calcium, copper, and zinc. By 60 min post-reperfusion, the central portion of the lesion showed pronounced element dysregulation and could be differentiated from a surrounding region of moderate dysregulation. Despite reperfusion, the lesion continued to expand dynamically with increasing severity of element dysregulation throughout the time course. Given that the earliest time point investigated already demonstrated signs of ion disruption, we anticipate such changes may be detectable even earlier. The profound ion dysregulation at the tissue level after reperfusion may contribute to hindering treatments aimed at functional recovery of the neurovascular unit.
Asunto(s)
Infarto de la Arteria Cerebral Media , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Infarto de la Arteria Cerebral Media/metabolismo , Homeostasis/fisiología , Accidente Cerebrovascular/metabolismo , Calcio/metabolismo , Modelos Animales de Enfermedad , Zinc/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Potasio/metabolismo , Cobre/metabolismo , Iones/metabolismoRESUMEN
Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death. Fourier transform infrared (FTIR) spectroscopy can simultaneously measure total protein and lipid content along with a number of key biomarkers within brain tissue that cannot be observed using conventional techniques. FTIR imaging provides the opportunity to visualize this information in tissue which has not been chemically treated prior to analysis, thus retaining the spatial distribution and in situ chemical information. Here we present a review of FTIR imaging methods for investigating the biomarker responses in the post-stroke brain.
Asunto(s)
Encéfalo , Accidente Cerebrovascular , Humanos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Análisis de Fourier , Accidente Cerebrovascular/diagnóstico por imagen , BiomarcadoresRESUMEN
Amyloid beta (Aß) peptides and copper (Cu) ions are each involved in critical biological processes including antimicrobial activity, regulation of synaptic function, angiogenesis, and others. Aß binds to Cu and may play a role in Cu trafficking. Aß peptides exist in isoforms that vary at their C-and N-termini; variation at the N-terminal sequence affects Cu binding affinity, structure, and redox activity by providing different sets of coordinating groups to the metal ion. Several N-terminal isoforms have been detected in human brain tissues including Aß1-40/42, Aß3-42, pEAß3-42, Aß4-42, Aß11-40 and pEAß11-40 (where pE denotes an N-terminal pyroglutamic acid). Several previous works have individually investigated the affinity and structure of Cu(I) bound to some of these isoforms' metal binding domains. However, the disparately reported values are apparent constants collected under different sets of conditions, and thus an integrated comparison cannot be made. The work presented here provides the Cu(I) coordination structure and binding affinities of these six biologically relevant Aß isoforms determined in parallel using model peptides of the Aß metal binding domains (Aß1-16, Aß3-16, pEAß3-16, Aß4-16, Aß11-16 and pEAß11-16). The binding affinities of Cu(I)-Aß complexes were measured using solution competition with ferrozine (Fz) and bicinchoninic acid (BCA), two colorimetric Cu(I) indicators in common use. The Cu(I) coordination structures were characterized by X-ray absorption spectroscopy. The data presented here facilitate comparison of the isoforms' Cu-binding interactions and contribute to our understanding of the role of Aß peptides as copper chelators in healthy and diseased brains.
Asunto(s)
Péptidos beta-Amiloides , Cobre , Humanos , Péptidos beta-Amiloides/química , Cobre/química , Isoformas de Proteínas , Iones , QuelantesRESUMEN
Copper plays vital roles in the active sites of cytochrome oxidase and in several other enzymes essential for human health. Copper is also highly toxic when dysregulated; because of this an elaborate array of accessory proteins have evolved which act as intracellular carriers or chaperones for the copper ions. In most cases chaperones transport cuprous copper. This review discusses some of the chemistry of these copper sites, with a view to some of the structural factors in copper coordination which are important in the biological function of these chaperones. The coordination chemistry and accessible geometries of the cuprous oxidation state are remarkably plastic and we discuss how this may relate to biological function. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Asunto(s)
Complejos de Coordinación/química , Cobre/química , Chaperonas Moleculares/química , Compuestos de Sulfhidrilo/química , Algoritmos , Animales , Coenzimas/química , Complejo IV de Transporte de Electrones/biosíntesis , Análisis de Fourier , Humanos , Modelos Moleculares , Termodinámica , Espectroscopía de Absorción de Rayos XRESUMEN
Molybdenum K-edge X-ray absorption spectroscopy (XAS) has been used to probe the structure of a Mo(V) species that has been suggested to be a catalytic intermediate in the reaction of dimethyl sulfoxide (DMSO) reductase with the alternative substrate trimethylamine N-oxide (Bennet et al. Eur. J. Biochem. 1994, 255, 321-331; Cobb et al. J. Biol. Chem. 2005, 280, 11007-11017; Mtei, et al. J. Am. Chem. Soc. 2011, 133, 9672-9774). The oxidized Mo(VI) state of DMSO reductase has previously been structurally characterized as being six coordinate, with four sulfurs from pyranopterin dithiolene molybdenum cofactors, a terminal oxygen ligand, and an additional oxygen coordination from a serine residue. We find the most plausible structure for the Mo(V) active site is a five-coordinate species with four sulfur donors from the two pyranopterin dithiolene ligands, with an average Mo-S bond-length of 2.35 Å, plus a single oxygen donor at 1.99 Å, very likely from an Mo-OH ligand. Our results thus suggest that the oxygen of the serine residue has dissociated from the metal ion, suggesting hitherto unsuspected flexibility of the active site, and calling into question whether this putative intermediate is catalytically relevant. The relevance to previous Mo(V) electron paramagnetic resonance and other spectroscopic studies on DMSO reductase is discussed. XAS of an extensively studied Mo(V) form of Rhodobacter sphaeroides DMSO reductase (the high-g split species) shows that previously suggested structures for the active site are likely incorrect.