RESUMEN
Aging dogs serve as a valuable preclinical model for Alzheimer's disease (AD) due to their natural age-related development of ß-amyloid (Aß) plaques, human-like metabolism, and large brains that are ideal for studying structural brain aging trajectories from serial neuroimaging. Here we examined the effects of chronic treatment with the calcineurin inhibitor (CNI) tacrolimus or the nuclear factor of activated T cells (NFAT)-inhibiting compound Q134R on age-related canine brain atrophy from a longitudinal study in middle-aged beagles (36 females, 7 males) undergoing behavioral enrichment. Annual MRI was analyzed using modern, automated techniques for region-of-interest-based and voxel-based volumetric assessments. We found that the frontal lobe showed accelerated atrophy with age, while the caudate nucleus remained relatively stable. Remarkably, the hippocampus increased in volume in all dogs. None of these changes were influenced by tacrolimus or Q134R treatment. Our results suggest that behavioral enrichment can prevent atrophy and increase the volume of the hippocampus but does not prevent aging-associated prefrontal cortex atrophy.
Asunto(s)
Envejecimiento , Atrofia , Encéfalo , Tacrolimus , Animales , Perros , Femenino , Atrofia/patología , Masculino , Envejecimiento/patología , Encéfalo/patología , Encéfalo/efectos de los fármacos , Tacrolimus/farmacología , Conducta Animal/efectos de los fármacos , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: Obesity is a growing problem worldwide and a major risk factor for many chronic diseases. The accumulation of adipose tissue leads to the release of significant amounts of pro-inflammatory cytokines and adipokines, resulting in a low-grade systemic inflammation. However, the mechanisms behind the development of obesity-related diseases are not fully understood. Therefore, our study aimed to investigate the pathological changes and inflammatory processes at systemic level and in individual organs in two different diet-induced mouse obesity models. METHODS: Male C57BL6/J mice were fed by high-fat diet (HFD), high-fat/high-fructose diet (HFD + FR) or normal chow for 21 weeks starting at 3 months of age (n = 15 animals/group). Insulin resistance was tested by oral glucose tolerance test. Pathological changes were investigated on hematoxylin-eosin-stained liver and brown adipose tissue sections. The gene expression levels of adipokines and cytokines were analyzed by qPCR in adipose tissues, whereas serum protein concentrations were determined by multiplex immunoassays. Immunophenotyping of isolated blood, bone marrow and spleen cells was performed by single-cell mass cytometry. RESULTS: Weight gain, glucose intolerance and hepatic steatosis were more severe in the HFD + FR group than in the control and HFD groups. This was accompanied by a higher level of systemic inflammation, as indicated by increased expression of pro-inflammatory genes in visceral white adipose tissue and by a higher serum TNFα level. In addition, immunophenotyping revealed the increase of the surface expressions of CD44 and CD69 on various cell types, such as CD8+ and CD4 + T-cells, B-cells and macrophages, in animals with obesity. CONCLUSIONS: The combination of HFD with fructose supplementation promotes more properly the symptoms of metabolic syndrome. Therefore, the combined high-fat/high-fructose nutrition can be a more suitable model of the Western diet. However, despite these differences, both models showed immunophenotypic changes that may be associated with increased risk of obesity-related cancer.
Asunto(s)
Dieta Alta en Grasa , Modelos Animales de Enfermedad , Inmunofenotipificación , Inflamación , Ratones Endogámicos C57BL , Obesidad , Animales , Ratones , Masculino , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo/patología , Tejido Adiposo/metabolismo , Adipoquinas/metabolismo , Resistencia a la InsulinaRESUMEN
A murine colorectal carcinoma (CRC) model was established. CT26 colon carcinoma cells were injected into BALB/c mice's spleen to study the primary tumor and the mechanisms of cell spread of colon cancer to the liver. The CRC was verified by the immunohistochemistry of Pan Cytokeratin and Vimentin expression. Immunophenotyping of leukocytes isolated from CRC-bearing BALB/c mice or healthy controls, such as CD19+ B cells, CD11+ myeloid cells, and CD3+ T cells, was carried out using fluorochrome-labeled lectins. The binding of six lectins to white blood cells, such as galectin-1 (Gal1), siglec-1 (Sig1), Sambucus nigra lectin (SNA), Aleuria aurantia lectin (AAL), Phytolacca americana lectin (PWM), and galectin-3 (Gal3), was assayed. Flow cytometric analysis of the splenocytes revealed the increased binding of SNA, and AAL to CD3 + T cells and CD11b myeloid cells; and increased siglec-1 and AAL binding to CD19 B cells of the tumor-bearing mice. The whole proteomic analysis of the established CRC-bearing liver and spleen versus healthy tissues identified differentially expressed proteins, characteristic of the primary or secondary CRC tissues. KEGG Gene Ontology bioinformatic analysis delineated the established murine CRC characteristic protein interaction networks, biological pathways, and cellular processes involved in CRC. Galectin-1 and S100A4 were identified as upregulated proteins in the primary and secondary CT26 tumor tissues, and these were previously reported to contribute to the poor prognosis of CRC patients. Modelling the development of liver colonization of CRC by the injection of CT26 cells into the spleen may facilitate the understanding of carcinogenesis in human CRC and contribute to the development of novel therapeutic strategies.
Asunto(s)
Carcinoma , Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Animales , Ratones , Galectina 1 , Modelos Animales de Enfermedad , Inmunofenotipificación , Proteómica , Lectina 1 Similar a Ig de Unión al Ácido Siálico , Tomografía Computarizada por Rayos XRESUMEN
Skeletal muscle plays a major role in whole-body glucose metabolism. Insulin resistance in skeletal muscle is characterized by decreased insulin-stimulated glucose uptake resulting from impaired intracellular trafficking and decreased glucose transporter 4 (GLUT4) expression. In this study, we illustrated that tilorone, a low-molecular-weight antiviral agent, improves glucose uptake in vitro and in vivo. Tilorone increased bone morphogenetic protein (BMP) signaling in C2C12 myoblasts, the transcription of multiple BMPs (BMP2, BMP4, BMP7, and BMP14), Smad4 expression, and the phosphorylation of BMP-mediated Smad1/5/8. The activation of Akt2/AS160 (TBC1D4) signaling, the critical regulator of GLUT4 translocation, was also increased, as well as the levels of GLUT4 and GLUT1, leading to enhanced uptake of the radioactively labeled glucose analog 18 F-fluoro-2-deoxyglucose (18 FDG). However, this excess glucose content did not result in increased ATP formation by mitochondrial respiration; both basal and ATP-linked respiration were diminished, thereby contributing to the induction of AMPK. In differentiated myotubes, AS160 phosphorylation and 18 FDG uptake also increased. Moreover, tilorone administration further increased insulin-stimulated phosphorylation of Akt2 and glucose uptake of myotubes indicating an insulin-sensitizing effect. Importantly, during in vivo experiments, the systemic administration of tilorone resulted in increased 18 FDG uptake of skeletal muscle, liver, and adipose tissue in C57BL/6 mice. Our results provide new perspectives for the treatment of type 2 diabetes, which has a limited number of treatments that regulate protein expression or translocation.
Asunto(s)
Diabetes Mellitus Tipo 2 , Tilorona , Animales , Ratones , Adenosina Trifosfato/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fluorodesoxiglucosa F18/metabolismo , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Insulina/farmacología , Insulina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosforilación , Tilorona/farmacología , Tilorona/uso terapéuticoRESUMEN
The overexpression of calcineurin leads to astrocyte hyperactivation, neuronal death, and inflammation, which are characteristics often associated with pathologic aging and Alzheimer's disease. In this study, we tested the hypothesis that tacrolimus, a calcineurin inhibitor, prevents age-associated microstructural atrophy, which we measured using higher-order diffusion MRI, in the middle-aged beagle brain (n = 30, male and female). We find that tacrolimus reduces hippocampal (p = 0.001) and parahippocampal (p = 0.002) neurite density index, as well as protects against an age-associated increase in the parahippocampal (p = 0.007) orientation dispersion index. Tacrolimus also protects against an age-related decrease in fractional anisotropy in the prefrontal cortex (p < 0.0001). We also show that these microstructural alterations precede cognitive decline and gross atrophy. These results support the idea that calcineurin inhibitors may have the potential to prevent aging-related pathology if administered at middle age.SIGNIFICANCE STATEMENT Hyperactive calcineurin signaling causes neuroinflammation and other neurobiological changes often associated with pathologic aging and Alzheimer's disease (AD). Controlling the expression of calcineurin before gross cognitive deficits are observable might serve as a promising avenue for preventing AD pathology. In this study, we show that the administration of the calcineurin inhibitor, tacrolimus, over 1 year prevents age- and AD-associated microstructural changes in the hippocampus, parahippocampal cortex, and prefrontal cortex of the middle-aged beagle brain, with no noticeable adverse effects. Tacrolimus is already approved by the Food and Drug Administration for use in humans to prevent solid organ transplant rejection, and our results bolster the promise of this drug to prevent AD and aging-related pathology.
Asunto(s)
Envejecimiento/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Inhibidores de la Calcineurina/farmacología , Tacrolimus/farmacología , Envejecimiento/patología , Animales , Atrofia/patología , Perros , Femenino , MasculinoRESUMEN
Research with deuterium-depleted water (DDW) in the last two decades proved that the deuterium/hydrogen ratio has a key role in cell cycle regulation and cellular metabolism. The present study aimed to investigate the possible effect of deuterium-depleted yolk (DDyolk) alone and in combination with DDW on cancer growth in two in vivo mouse models. To produce DDyolk, the drinking water of laying hens was replaced with DDW (25 ppm) for 6 weeks, resulting in a 60 ppm D level in dried egg yolk that was used as a deuterium-depleted food additive. In one model, 4T1, a cell line with a high metastatic capacity to the lung was inoculated in the mice's mammary pad. After three weeks of treatment with DDW and/or DDyolk, the tumor volume in the lungs was smaller in all treated groups vs. controls with natural D levels. Tumor growth and survival in mice transplanted with an MCF-7 breast cancer cell line showed that the anticancer effect of DDW was enhanced by food containing the deuterium-depleted yolk. The study confirmed the importance of the D/H ratio in consumed water and in metabolic water produced by the mitochondria while oxidizing nutrient molecules. This is in line with the concept that the initiation of cell growth requires the cells to generate a higher D/H ratio, but DDW, DDyolk, or the naturally low-D lipids in a ketogenic diet, have a significant effect on tumor growth by preventing the cells from raising the D/H ratio to the threshold.
RESUMEN
The possible role of the naturally occurring deuterium in the regulation of cell division was first described in the 1990s. To investigate the mechanism of influence of deuterium (D) on cell growth, expression of 236 cancer-related and 536 kinase genes were tested in deuterium-depleted (40 and 80 ppm) and deuterium-enriched (300 ppm) media compared to natural D level (150 ppm). Among genes with expression changes exceeding 30% and copy numbers over 30 (124 and 135 genes, respectively) 97.3% of them was upregulated at 300 ppm D-concentration. In mice exposed to chemical carcinogen, one-year survival data showed that deuterium-depleted water (DDW) with 30 ppm D as drinking water prevented tumor development. One quarter of the treated male mice survived 344 days, the females 334 days, while one quarter of the control mice survived only 188 and 156 days, respectively. In our human retrospective study 204 previously treated cancer patients with disease in remission, who consumed DDW, were followed. Cumulative follow-up time was 1024 years, and average follow-up time per patient, 5 years (median: 3.6 years). One hundred and fifty-six patients out of 204 (77.9%) did not relapse during their 803 years cumulative follow-up time. Median survival time (MST) was not calculable due to the extremely low death rate (11 cancer-related deaths, 5.4% of the study population). Importantly, 8 out of 11 deaths occurred several years after stopping DDW consumption, confirming that regular consumption of DDW can prevent recurrence of cancer. These findings point to the likely mechanism in which consumption of DDW keeps D-concentration below natural levels, preventing the D/H ratio from increasing to the threshold required for cell division. This in turn can serve as a key to reduce the relapse rate of cancer patients and/or to reduce cancer incidence in healthy populations.
Asunto(s)
Deuterio/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Recurrencia Local de Neoplasia/genética , Neoplasias/genética , Agua/administración & dosificación , Animales , Procesos de Crecimiento Celular/efectos de los fármacos , Variaciones en el Número de Copia de ADN/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Recurrencia Local de Neoplasia/prevención & control , Estudios Retrospectivos , Agua/químicaRESUMEN
Here, we describe the synthesis and biologic activity evaluation of 20 novel synthetic marine sponge alkaloid analogues with 2-amino-1H-imidazol (2-AI) core. Cytotoxicity was tested on murine 4T1 breast cancer, A549 human lung cancer, and HL-60 human myeloid leukemia cells by the resazurin assay. A total of 18 of 20 compounds showed cytotoxic effect on the cancer cell lines with different potential. Viability of healthy human fibroblasts and peripheral blood mononuclear cells upon treatment was less hampered compared to cancer cell lines supporting tumor cell specific cytotoxicity of our compounds. The most cytotoxic compounds resulted the following IC50 values 28: 2.91 µM on HL-60 cells, and 29: 3.1 µM on 4T1 cells. The A549 cells were less sensitive to the treatments with IC50 15 µM for both 28 and 29. Flow cytometry demonstrated the apoptotic effect of the most active seven compounds inducing phosphatidylserine exposure and sub-G1 fragmentation of nuclear DNA. Cell cycle arrest was also observed. Four compounds caused depolarization of the mitochondrial membrane potential as an early event of apoptosis. Two lead compounds inhibited tumor growth in vivo in the 4T1 triple negative breast cancer and A549 human lung adenocarcinoma xenograft models. Novel marine sponge alkaloid analogues are demonstrated as potential anticancer agents for further development.
Asunto(s)
Antineoplásicos , Poríferos , Humanos , Ratones , Animales , Línea Celular Tumoral , Leucocitos Mononucleares , Antineoplásicos/farmacología , Apoptosis , Proliferación CelularRESUMEN
We developed a human melanoma model using the HT168-M1 cell line to induce IFN-α2 resistance in vitro (HT168-M1res), which was proven to be maintained in vivo in SCID mice. Comparing the mRNA profile of in vitro cultured HT168-M1res cells to its sensitive counterpart, we found 79 differentially expressed genes (DEGs). We found that only a 13-gene core of the DEGs was stable in vitro and only a 4-gene core was stable in vivo. Using an in silico cohort of IFN-treated melanoma tissues, we validated a differentially expressed 9-gene core of the DEGs. Furthermore, using an in silico cohort of immune checkpoint inhibitor (ICI)-treated melanoma tissues, we tested the predictive power of the DEGs for the response rate. Analysis of the top four upregulated and top four downregulated genes of the DEGs identified WFDC1, EFNA3, DDX10, and PTBP1 as predictive genes, and analysis of the "stable" genes of DEGs for predictive potential of ICI response revealed another 13 genes, out of which CDCA4, SOX4, DEK, and HSPA1B were identified as IFN-regulated genes. Interestingly, the IFN treatment associated genes and the ICI-therapy predictive genes overlapped by three genes: WFDC1, BCAN, and MT2A, suggesting a connection between the two biological processes.
Asunto(s)
Melanoma , Transcriptoma , Animales , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/genética , ARN Helicasas DEAD-box , Perfilación de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Inmunoterapia , Melanoma/tratamiento farmacológico , Melanoma/genética , Ratones , Ratones SCID , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteína de Unión al Tracto de Polipirimidina , Proteínas/genética , Factores de Transcripción SOXC/genéticaRESUMEN
Vaccination against SARS-CoV-2 to prevent COVID-19 is highly recommended for immunocompromised patients with autoimmune rheumatic and musculoskeletal diseases (aiRMDs). Little is known about the effect of booster vaccination or infection followed by previously completed two-dose vaccination in aiRMDs. We determined neutralizing anti-SARS-CoV-2 antibody levels and applied flow cytometric immunophenotyping to quantify the SARS-CoV-2 reactive B- and T-cell mediated immunity in aiRMDs receiving homologous or heterologous boosters or acquired infection following vaccination. Patients receiving a heterologous booster had a higher proportion of IgM+ SARS-CoV-2 S+ CD19+CD27+ peripheral memory B-cells in comparison to those who acquired infection. Biologic therapy decreased the number of S+CD19+; S+CD19+CD27+IgG+; and S+CD19+CD27+IgM+ B-cells. The response rate to a booster event in cellular immunity was the highest in the S-, M-, and N-reactive CD4+CD40L+ T-cell subset. Patients with a disease duration of more than 10 years had higher proportions of CD8+TNF-α+ and CD8+IFN-γ+ T-cells in comparison to patients who were diagnosed less than 10 years ago. We detected neutralizing antibodies, S+ reactive peripheral memory B-cells, and five S-, M-, and N-reactive T-cells subsets in our patient cohort showing the importance of booster events. Biologic therapy and <10 years disease duration may confound anti-SARS-CoV-2 specific immunity in aiRMDs.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ligando de CD40 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , Inmunoglobulina M , Factor de Necrosis Tumoral alfa , VacunaciónRESUMEN
The prevalence of cardiovascular diseases dramatically increases with age; therefore, striving to maintain a physiological heart function is particularly important. Our aim was to study the voluntary exercise-evoked cardioprotective effects in aged male and female rats, from genetic alterations to changes in heart performance. We divided 20-month-old female and male Wistar rats to control and running groups. After the 12-wk-long experimental period, echocardiographic measurements were performed. Afterwards, hearts were either removed for biochemical measurements or mounted into a Langendorff-perfusion system to detect infarct size. The following genes and their proteins were analyzed from heart: catechol-O-methyltransferase (Comt), endothelin-1 (Esm1), Purkinje cell protein-4 (Pcp4), and osteoglycin (Ogn). Recreational exercise caused functional improvements; however, changes were more prominent in males. Cardiac expression of Comt and Ogn was reduced as a result of exercise in aged males, whereas Pcp4 and Esm1 showed a marked overexpression, along with a markedly improved diastolic function. The key result of this study is that exercise enhanced the expression of the Pcp4 gene and protein, a recently described regulator of calcium balance in cardiomyocytes, and suppressed Comt and Ogn gene expression, which has been associated with impaired cardiac function. In addition, as a result of exercise, a significant improvement was observed in the size of infarct elicited by left anterior descending coronary artery occlusion. Our results clearly show that age and sex-dependent changes were both apparent in key proteins linked to cardiovascular physiology. Exercise-moderated fundamental genetic alterations may have contributed to the functional adaptation of the heart.NEW & NOTEWORTHY Voluntary exercise has proved to be an effective therapeutic tool to improve cardiac function in aged rats with clearly visible sex differences. Long-term exercise is associated with decreased Ogn and Comt expression and enhanced presence of Pcp4 and Esm1 genes. Sex-dependent changes were also observed in the expression of the cardiovascular key proteins. Fundamental alterations in gene and protein expression may contribute to the improvement of cardiac performance.
Asunto(s)
Envejecimiento , Regulación de la Expresión Génica , Corazón/fisiología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Condicionamiento Físico Animal , Carrera , Adaptación Fisiológica , Animales , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Corazón/diagnóstico por imagen , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Preparación de Corazón Aislado , Masculino , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Ratas Wistar , Factores SexualesRESUMEN
The effects of deuterium-depleted water (DDW) containing deuterium (D) at a concentration of 25 parts per million (ppm), 50 ppm, 105 ppm and the control at 150 ppm were monitored in MIA-PaCa-2 pancreatic cancer cells by the real-time cell impedance detection xCELLigence method. The data revealed that lower deuterium concentrations corresponded to lower MiA PaCa-2 growth rate. Nuclear membrane turnover and nucleic acid synthesis rate at different D-concentrations were determined by targeted [1,2-13C2]-D-glucose fate associations. The data showed severely decreased oxidative pentose cycling, RNA ribose 13C labeling from [1,2-13C2]-D-glucose and nuclear membrane lignoceric (C24:0) acid turnover. Here, we treated advanced pancreatic cancer patients with DDW as an extra-mitochondrial deuterium-depleting strategy and evaluated overall patient survival. Eighty-six (36 male and 50 female) pancreatic adenocarcinoma patients were treated with conventional chemotherapy and natural water (control, 30 patients) or 85 ppm DDW (56 patients), which was gradually decreased to preparations with 65 ppm and 45 ppm deuterium content for each 1 to 3 months treatment period. Patient survival curves were calculated by the Kaplan-Meier method and Pearson correlation was taken between medial survival time (MST) and DDW treatment in pancreatic cancer patients. The MST for patients consuming DDW treatment (n = 56) was 19.6 months in comparison with the 6.36 months' MST achieved with chemotherapy alone (n = 30). There was a strong, statistically significant Pearson correlation (r = 0.504, p < 0.001) between survival time and length and frequency of DDW treatment.
Asunto(s)
Deuterio/uso terapéutico , Membrana Nuclear/efectos de los fármacos , Neoplasias Pancreáticas/genética , ARN/efectos de los fármacos , Proliferación Celular , Deuterio/farmacología , Femenino , Humanos , Masculino , Neoplasias PancreáticasRESUMEN
A new approach for the preparation of (2-amino-3-cyano-4H-chromen-4-yl)phosphonate derivatives is described. The multicomponent reaction of salicylaldehydes, malononitrile and dialkyl phosphites catalyzed by pentamethyldiethylenetriamine (PMDTA) provided the bicyclic derivatives in high yields. The method developed did not require chromatographic separation, since the products could be recovered from the reaction mixture by simple filtration. Our approach made also possible condensation with secondary phosphine oxides, and this reaction has not been previously reported in the literature. The crystal structures of five derivatives were studied by single-crystal XRD analysis. The in vitro cytotoxicity on different cell lines and the antibacterial activity of the (2-amino-4H-chromen-4-yl)phosphonates synthesized were also explored. According to the IC50 values determined, several derivatives showed moderate or promising activity against mouse fibroblast (NIH/3T3) and human promyelocytic leukemia (HL-60) cells. Furthermore, three (2-amino-3-cyano-4H-chromen-4-yl)phosphine oxides were active against selected Gram-positive bacteria.
Asunto(s)
BenzopiranosRESUMEN
A new method for the synthesis of 3-oxoisoindolin-1-ylphosphine oxides bearing same or different substituents on the phosphorus atom is described. The one-pot three-component reaction of 2-formylbenzoic acid, primary amines and achiral or P-stereogenic secondary phosphine oxides provided the target compounds under catalyst-free, mild conditions and for short reaction times. The deoxygenation of a 3-oxoisoindolin-1-ylphosphine oxide was also studied, and the phosphine obtained could be converted to a sulphide and to a platinum complex. The crystal structures of a selected phosphine oxide and the corresponding platinum species were investigated by X-ray diffraction analysis. The biological activity, such as in vitro cytotoxicity on different cell lines and antibacterial activity of the 3-oxoisoindolin-1-ylphosphine oxides was also investigated. Based on the IC50 values obtained, several derivatives showed moderate activity against the HL-60 cell line and two compounds containing 3,5-dimethylphenyl groups on the phosphorus atom showed promising activity against Bacillus subtilis bacteria.
Asunto(s)
FosfinasRESUMEN
Transcriptional perturbation signatures are valuable data sources for functional genomics. Linking perturbation signatures to screenings opens the possibility to model cellular phenotypes from expression data and to identify efficacious drugs. We linked perturbation transcriptomics data from the LINCS-L1000 project with cell viability information upon genetic (Achilles project) and chemical (CTRP screen) perturbations yielding more than 90 000 signature-viability pairs. An integrated analysis showed that the cell viability signature is a major factor underlying perturbation signatures. The signature is linked to transcription factors regulating cell death, proliferation and division time. We used the cell viability-signature relationship to predict viability from transcriptomics signatures, and identified and validated compounds that induce cell death in tumor cell lines. We showed that cellular toxicity can lead to unexpected similarity of signatures, confounding mechanism of action discovery. Consensus compound signatures predicted cell-specific drug sensitivity, even if the signature is not measured in the same cell line, and outperformed conventional drug-specific features. Our results can help in understanding mechanisms behind cell death and removing confounding factors of transcriptomic perturbation screens. To interactively browse our results and predict cell viability in new gene expression samples, we developed CEVIChE (CEll VIability Calculator from gene Expression; https://saezlab.shinyapps.io/ceviche/).
Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Programas Informáticos , Transcriptoma/genética , Muerte Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Descubrimiento de Drogas , HumanosRESUMEN
There is a current imperative to reveal more precisely the molecular pathways of early onset of systemic autoimmune diseases (SADs). The investigation of newly diagnosed drug-naive SAD patients might contribute to identify novel disease-specific and prognostic markers. The multiplex analysis of 30 plasma proteins in 60 newly diagnosed drug-naive SADs, such as RA (rheumatoid arthritis, n = 31), SLE (systemic lupus erythematosus, n = 19), and SSc (systemic scleroderma, n = 10) patients, versus healthy controls (HCs, n = 40) was addressed. Thirty plasma cytokines were quantified using the Procarta Plex™ panel. The higher expression of IL-12p40, IL-10, IL-13, IFN-γ, M-CSF, IL-4, NTproBNP, IL-17A, BMP-9, PYY (3-36), GITRL, MMP-12, and TNFRSF6 was associated with RA; IL-12p40, M-CSF, IL-4, GITRL, and NTproBNP were higher in SLE; or NTproBNP, PYY (3-36), and MMP-12 were increased in SSc over HCs, respectively. The cleaved peptide tyrosine tyrosine (PYY 3-36) was elevated in RA (361.6 ± 47.7 pg/ml) vs. HCs (163.96 ± 14.5 pg/ml, mean ± SEM, ∗∗∗ p = 4 × 10-5). The CI (95%) was 268.05-455.16 pg/ml for RA vs. 135.55-192.37 pg/ml for HCs. The elevated PYY (3-36) level correlated significantly with the increased IL-4 or GITRL concentration but not with the clinical scores (DAS28, CRP, ESR, RF, aMCV). We are the first to report cleaved PYY (3-36) as a specific plasma marker of therapy-naive RA. Additionally, the multiplex plasma protein analysis supported a disease-specific cytokine pattern in RA, SLE, and SSc, respectively.
Asunto(s)
Artritis Reumatoide/sangre , Artritis Reumatoide/inmunología , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/fisiopatología , Biomarcadores/sangre , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Esclerodermia Sistémica/sangre , Esclerodermia Sistémica/inmunología , Tirosina/química , Anciano , Citocinas/metabolismo , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Reconocimiento de Normas Patrones Automatizadas , PronósticoRESUMEN
Inappropriate nutrition and a sedentary lifestyle can lead to obesity, one of the most common risk factors for several chronic diseases. Although regular physical exercise is an efficient approach to improve cardiometabolic health, the exact cellular processes are still not fully understood. We aimed to analyze the morphological, gene expression, and lipidomic patterns in the liver and adipose tissues in response to regular exercise. Healthy (wild type on a normal diet) and hyperlipidemic, high-fat diet-fed (HFD-fed) apolipoprotein B-100 (APOB-100)-overexpressing mice were trained by treadmill running for 7 months. The serum concentrations of triglyceride and tumor necrosis factor α (TNFα), as well as the level of lipid accumulation in the liver, were significantly higher in HFD-fed APOB-100 males compared to females. However, regular exercise almost completely abolished lipid accumulation in the liver of hyperlipidemic animals. The expression level of the thermogenesis marker, uncoupling protein-1 (Ucp1), was significantly higher in the subcutaneous white adipose tissue of healthy females, as well as in the brown adipose tissue of HFD-fed APOB-100 females, compared to males. Lipidomic analyses revealed that hyperlipidemia essentially remodeled the lipidome of brown adipose tissue, affecting both the membrane and storage lipid fractions, which was partially restored by exercise in both sexes. Our results revealed more severe metabolic disturbances in HFD-fed APOB-100 males compared to females. However, exercise efficiently reduced the body weight, serum triglyceride levels, expression of pro-inflammatory factors, and hepatic lipid accumulation in our model.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hiperlipidemias/metabolismo , Hiperlipidemias/fisiopatología , Obesidad/metabolismo , Obesidad/fisiopatología , Condicionamiento Físico Animal/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/fisiología , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones TransgénicosRESUMEN
The first 1,3-dipolar cycloaddition of 2H-azirines with nitrones, a straightforward approach toward the regioselective synthesis of 1,2,4,5-tetrasubstituted imidazoles, is reported. This trifluoroacetic acid-catalyzed protocol tolerates a broad range of aliphatic and aromatic substrates, offering an efficient access to highly diverse, multisubstituted imidazoles in isolated yields up to 83% under mild conditions.
RESUMEN
Chemotherapy-induced differentiation of immature myeloid progenitors, such as acute myeloid leukemia (AML) cells or myeloid-derived suppressor cells (MDSCs), has remained a challenge for the clinicians. Testing our imidazo[1,2-b]pyrazole-7-carboxamide derivative on HL-60 cells, we obtained ERK phosphorylation as an early survival response to treatment followed by the increase of the percentage of the Bcl-xlbright and pAktbright cells. Following the induction of Vav1 and the AP-1 complex, a driver of cellular differentiation, FOS, JUN, JUNB, and JUND were elevated on a concentration and time-dependent manner. As a proof of granulocytic differentiation, the cells remained non-adherent, the expression of CD33 decreased; the granularity, CD11b expression, and MPO activity of HL-60 cells increased upon treatment. Finally, viability of HL-60 cells was hampered shown by the depolarization of mitochondria, activation of caspase-3, cleavage of Z-DEVD-aLUC, appearance of the sub-G1 population, and the leakage of the lactate-dehydrogenase into the supernatant. We confirmed the differentiating effect of our drug candidate on human patient-derived AML cells shown by the increase of CD11b and decrease of CD33+, CD7+, CD206+, and CD38bright cells followed apoptosis (IC50: 80 nM) after treatment ex vivo. Our compound reduced both CD11b+/Ly6C+ and CD11b+/Ly6G+ splenic MDSCs from the murine 4T1 breast cancer model ex vivo.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Células Supresoras de Origen Mieloide/efectos de los fármacos , Pirazoles/farmacología , Animales , Antineoplásicos/química , Diferenciación Celular/efectos de los fármacos , Femenino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Células Supresoras de Origen Mieloide/citología , Células Supresoras de Origen Mieloide/metabolismo , Pirazoles/química , Células Tumorales Cultivadas , Adulto JovenRESUMEN
Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein subfamily, is predominantly expressed in the brain and placenta in humans. Recently, we unveiled that ZNF554 regulates trophoblast invasion during placentation and its decreased expression leads to the early pathogenesis of preeclampsia. Since ZNF proteins are immensely implicated in the development of several tumors including malignant tumors of the brain, here we explored the pathological role of ZNF554 in gliomas. We examined the expression of ZNF554 at mRNA and protein levels in normal brain and gliomas, and then we searched for genome-wide transcriptomic changes in U87 glioblastoma cells transiently overexpressing ZNF554. Immunohistochemistry of brain tissues in our cohort (n = 62) and analysis of large TCGA RNA-Seq data (n = 687) of control, oligodendroglioma, and astrocytoma tissues both revealed decreased expression of ZNF554 towards higher glioma grades. Furthermore, low ZNF554 expression was associated with shorter survival of grade III and IV astrocytoma patients. Overexpression of ZNF554 in U87 cells resulted in differential expression, mostly downregulation of 899 genes. The "PI3K-Akt signaling pathway", known to be activated during glioma development, was the most impacted among 116 dysregulated pathways. Most affected pathways were cancer-related and/or immune-related. Congruently, cell proliferation was decreased and cell cycle was arrested in ZNF554-transfected glioma cells. These data collectively suggest that ZNF554 is a potential tumor suppressor and its decreased expression may lead to the loss of oncogene suppression, activation of tumor pathways, and shorter survival of patients with malignant glioma.