Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 623(7986): 381-386, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880369

RESUMEN

To maintain a stable and clear image of the world, our eyes reflexively follow the direction in which a visual scene is moving. Such gaze-stabilization mechanisms reduce image blur as we move in the environment. In non-primate mammals, this behaviour is initiated by retinal output neurons called ON-type direction-selective ganglion cells (ON-DSGCs), which detect the direction of image motion and transmit signals to brainstem nuclei that drive compensatory eye movements1. However, ON-DSGCs have not yet been identified in the retina of primates, raising the possibility that this reflex is mediated by cortical visual areas. Here we mined single-cell RNA transcriptomic data from primate retina to identify a candidate ON-DSGC. We then combined two-photon calcium imaging, molecular identification and morphological analysis to reveal a population of ON-DSGCs in the macaque retina. The morphology, molecular signature and GABA (γ-aminobutyric acid)-dependent mechanisms that underlie direction selectivity in primate ON-DSGCs are highly conserved with those in other mammals. We further identify a candidate ON-DSGC in human retina. The presence of ON-DSGCs in primates highlights the need to examine the contribution of subcortical retinal mechanisms to normal and aberrant gaze stabilization in the developing and mature visual system.


Asunto(s)
Movimientos Oculares , Macaca , Retina , Células Ganglionares de la Retina , Animales , Humanos , Movimientos Oculares/fisiología , Estimulación Luminosa , Retina/citología , Retina/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Movimiento (Física) , Análisis de Expresión Génica de una Sola Célula , Ácido gamma-Aminobutírico/metabolismo , Señalización del Calcio , Fijación Ocular/fisiología
2.
Mol Ther ; 30(3): 1315-1328, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34547460

RESUMEN

All retina-based vision restoration approaches rely on the assumption that photoreceptor loss does not preclude reactivation of the remaining retinal architecture. Whether extended periods of vision loss limit the efficacy of restorative therapies at the retinal level is unknown. We examined long-term changes in optogenetic responsivity of foveal retinal ganglion cells (RGCs) in non-human primates following localized photoreceptor ablation by high-intensity laser exposure. By performing fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) of RGCs expressing both the calcium indicator GCaMP6s and the optogenetic actuator ChrimsonR, it was possible to track optogenetic-mediated calcium responses in deafferented RGCs over time. Fluorescence fundus photography revealed a 40% reduction in ChrimsonR fluorescence from RGCs lacking photoreceptor input over the 3 weeks following photoreceptor ablation. Despite this, in vivo imaging revealed good cellular preservation of RGCs 3 months after the loss of photoreceptor input, and histology confirmed good structural preservation at 2 years. Optogenetic responses of RGCs in primate persisted for at least 1 year after the loss of photoreceptor input, with a sensitivity index similar to optogenetic responses recorded in intact retina. These results are promising for all potential therapeutic approaches to vision restoration that rely on preservation and reactivation of RGCs.


Asunto(s)
Calcio , Optogenética , Animales , Optogenética/métodos , Células Fotorreceptoras , Primates , Retina
3.
J Neurosci ; 38(14): 3414-3427, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483285

RESUMEN

Silent voltage-gated potassium channel subunits (KVS) interact selectively with members of the KV2 channel family to modify their functional properties. The localization and functional roles of these silent subunits remain poorly understood. Mutations in the KVS subunit, KV8.2 (KCNV2), lead to severe visual impairment in humans, but the basis of these deficits remains unclear. Here, we examined the localization, native interactions, and functional properties of KV8.2-containing channels in mouse, macaque, and human photoreceptors of either sex. In human retina, KV8.2 colocalized with KV2.1 and KV2.2 in cone inner segments and with KV2.1 in rod inner segments. KV2.1 and KV2.2 could be coimmunoprecipitated with KV8.2 in retinal lysates indicating that these subunits likely interact directly. Retinal KV2.1 was less phosphorylated than cortical KV2.1, a difference expected to alter the biophysical properties of these channels. Using voltage-clamp recordings and pharmacology, we provide functional evidence for Kv2-containing channels in primate rods and cones. We propose that the presence of KV8.2, and low levels of KV2.1 phosphorylation shift the activation range of KV2 channels to align with the operating range of rod and cone photoreceptors. Our data indicate a role for KV2/KV8.2 channels in human photoreceptor function and suggest that the visual deficits in patients with KCNV2 mutations arise from inadequate resting activation of KV channels in rod and cone inner segments.SIGNIFICANCE STATEMENT Mutations in a voltage-gated potassium channel subunit, KV8.2, underlie a blinding inherited photoreceptor dystrophy, indicating an important role for these channels in human vision. Here, we have defined the localization and subunit interactions of KV8.2 channels in primate photoreceptors. We show that the KV8.2 subunit interacts with different Kv2 channels in rods and cones, giving rise to potassium currents with distinct functional properties. Our results provide a molecular basis for retinal dysfunction in patients with mutations in the KCNV2 gene encoding KV8.2.


Asunto(s)
Potenciales de Acción , Células Fotorreceptoras/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio Shab/metabolismo , Adulto , Anciano , Animales , Femenino , Humanos , Macaca , Masculino , Ratones , Persona de Mediana Edad , Células Fotorreceptoras/fisiología , Potasio/metabolismo , Multimerización de Proteína , Transporte de Proteínas
4.
J Neurosci ; 38(27): 6145-6160, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29875267

RESUMEN

α2δ-4 is an auxiliary subunit of voltage-gated Cav1.4 L-type channels that regulate the development and mature exocytotic function of the photoreceptor ribbon synapse. In humans, mutations in the CACNA2D4 gene encoding α2δ-4 cause heterogeneous forms of vision impairment in humans, the underlying pathogenic mechanisms of which remain unclear. To investigate the retinal function of α2δ-4, we used genome editing to generate an α2δ-4 knock-out (α2δ-4 KO) mouse. In male and female α2δ-4 KO mice, rod spherules lack ribbons and other synaptic hallmarks early in development. Although the molecular organization of cone synapses is less affected than rod synapses, horizontal and cone bipolar processes extend abnormally in the outer nuclear layer in α2δ-4 KO retina. In reconstructions of α2δ-4 KO cone pedicles by serial block face scanning electron microscopy, ribbons appear normal, except that less than one-third show the expected triadic organization of processes at ribbon sites. The severity of the synaptic defects in α2δ-4 KO mice correlates with a progressive loss of Cav1.4 channels, first in terminals of rods and later cones. Despite the absence of b-waves in electroretinograms, visually guided behavior is evident in α2δ-4 KO mice and better under photopic than scotopic conditions. We conclude that α2δ-4 plays an essential role in maintaining the structural and functional integrity of rod and cone synapses, the disruption of which may contribute to visual impairment in humans with CACNA2D4 mutations.SIGNIFICANCE STATEMENT In the retina, visual information is first communicated by the synapse formed between photoreceptors and second-order neurons. The mechanisms that regulate the structural integrity of this synapse are poorly understood. Here we demonstrate a role for α2δ-4, a subunit of voltage-gated Ca2+ channels, in organizing the structure and function of photoreceptor synapses. We find that presynaptic Ca2+ channels are progressively lost and that rod and cone synapses are disrupted in mice that lack α2δ-4. Our results suggest that alterations in presynaptic Ca2+ signaling and photoreceptor synapse structure may contribute to vision impairment in humans with mutations in the CACNA2D4 gene encoding α2δ-4.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Animales , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Noqueados
5.
Exp Eye Res ; 189: 107825, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31589838

RESUMEN

The development of therapies for retinal disorders is hampered by a lack of appropriate animal models. Higher nonhuman primates are the only animals with retinal structure similar to humans, including the presence of a macula and fovea. However, few nonhuman primate models of genetic retinal disease are known. We identified a lineage of rhesus macaques with a frameshift mutation in exon 3 of the BBS7 gene c.160delG (p.Ala54fs) that is predicted to produce a non-functional protein. In humans, mutations in this and other BBS genes cause Bardet-Biedl syndrome, a ciliopathy and a syndromic form of retinitis pigmentosa generally occurring in conjunction with kidney dysfunction, polydactyly, obesity, and/or hypogonadism. Three full- or half-sibling monkeys homozygous for the BBS7 c.160delG variant, at ages 3.5, 4 and 6 years old, displayed a combination of severe photoreceptor degeneration and progressive kidney disease. In vivo retinal imaging revealed features of severe macular degeneration, including absence of photoreceptor layers, degeneration of the retinal pigment epithelium, and retinal vasculature atrophy. Electroretinography in the 3.5-year-old case demonstrated loss of scotopic and photopic a-waves and markedly reduced and delayed b-waves. Histological assessments in the 4- and 6-year-old cases confirmed profound loss of photoreceptors and inner retinal neurons across the posterior retina, with dramatic thinning and disorganization of all cell layers, abundant microglia, absent or displaced RPE cells, and significant gliosis in the subretinal space. Retinal structure, including presence of photoreceptors, was preserved only in the far periphery. Ultrasound imaging of the kidneys revealed deranged architecture, and renal histopathology identified distorted contours with depressed, fibrotic foci and firmly adhered renal capsules; renal failure occurred in the 6-year-old case. Magnetic resonance imaging obtained in one case revealed abnormally low total brain volume and unilateral ventricular enlargement. The one male had abnormally small testes at 4 years of age, but polydactyly and obesity were not observed. Thus, monkeys homozygous for the BBS7 c.160delG variant closely mirrored several key features of the human BBS syndrome. This finding represents the first identification of a naturally-occurring nonhuman primate model of BBS, and more broadly the first such model of retinitis pigmentosa and a ciliopathy with an associated genetic mutation. This important new preclinical model will provide the basis for better understanding of disease progression and for the testing of new therapeutic options, including gene and cell-based therapies, not only for BBS but also for multiple forms of photoreceptor degeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Síndrome de Bardet-Biedl/diagnóstico , Ceguera/etiología , Proteínas del Citoesqueleto/genética , ADN/genética , Mutación del Sistema de Lectura , Retina/patología , Retinitis Pigmentosa/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Síndrome de Bardet-Biedl/complicaciones , Síndrome de Bardet-Biedl/genética , Encéfalo/patología , Proteínas del Citoesqueleto/metabolismo , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Angiografía con Fluoresceína/métodos , Fondo de Ojo , Inmunohistoquímica , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Tomografía de Coherencia Óptica/métodos
6.
bioRxiv ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-37398439

RESUMEN

Objective or purpose: Physiological changes in retinal ganglion cells (RGCs) have been reported in rodent models of photoreceptor (PR) loss but this has not been investigated in primates. By expressing both a calcium indicator (GCaMP6s) and an optogenetic actuator (ChrimsonR) in foveal RGCs of the macaque, we reactivated RGCs in vivo and assessed their response in the weeks and years following PR loss. Design: We used an in vivo calcium imaging approach to record optogenetically evoked activity in deafferented RGCs in primate fovea. Cellular scale recordings were made longitudinally over a 10 week period following photoreceptor ablation and compared to responses from RGCs that had lost photoreceptor input more than two years prior. Participants: Three eyes received photoreceptor ablation, OD of a male Macaca mulatta (M1), OS of a female Macaca fascicularis (M2) and OD of a male Macaca fascicularis (M3). Two animals were used for in vivo recording, one for histological assessment. Methods: Cones were ablated with an ultrafast laser delivered through an adaptive optics scanning light ophthalmoscope (AOSLO). A 0.5 s pulse of 25Hz 660nm light optogenetically stimulated RGCs, and the resulting GCaMP fluorescence signal was recorded using AOSLO. Measurements were repeated over 10 weeks immediately after PR ablation, at 2.3 years and in control RGCs. Main Outcome measures: The calcium rise time, decay constant and sensitivity index of optogenetic mediated RGC were derived from GCaMP fluorescence recordings from 221 RGCs (Animal M1) and 218 RGCs (Animal M2) in vivo. Results: Following photoreceptor ablation, the mean decay constant of the calcium response in RGCs decreased 1.5 fold (1.6±0.5 s to 0.6±0.3 s SD) over the 10 week observation period in subject 1 and 2.1 fold (2.5±0.5 s to 1.2±0.2 s SD) within 8 weeks in subject 2. Calcium rise time and sensitivity index were stable. Optogenetic reactivation remained possible 2.3 years after PR ablation. Conclusions: Altered calcium dynamics developed in primate foveal RGCs in the weeks after photoreceptor ablation. The mean decay constant of optogenetic mediated calcium responses decreased 1.5 - 2-fold. This is the first report of this phenomenon in primate retina and further work is required to understand the role these changes play in cell survival and activity.

7.
Ophthalmol Sci ; 4(5): 100520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881601

RESUMEN

Purpose: Physiological changes in retinal ganglion cells (RGCs) have been reported in rodent models of photoreceptor (PR) loss, but this has not been investigated in primates. By expressing both a calcium indicator (GCaMP6s) and an optogenetic actuator (ChrimsonR) in foveal RGCs of the macaque, we reactivated RGCs in vivo and assessed their response in the weeks and years after PR loss. Design: We used an in vivo calcium imaging approach to record optogenetically evoked activity in deafferented RGCs in primate fovea. Cellular scale recordings were made longitudinally over a 10-week period after PR ablation and compared with responses from RGCs that had lost PR input >2 years prior. Participants: Three eyes received PR ablation, the right eye of a male Macaca mulatta (M1), the left eye of a female Macaca fascicularis (M2), and the right eye of a male Macaca fascicularis (M3). Two animals were used for in vivo recording, 1 for histological assessment. Methods: Cones were ablated with an ultrafast laser delivered through an adaptive optics scanning light ophthalmoscope (AOSLO). A 0.5 second pulse of 25 Hz 660 nm light optogenetically stimulated RGCs, and the resulting GCaMP fluorescence signal was recorded using an AOSLO. Measurements were repeated over 10 weeks immediately after PR ablation, at 2.3 years and in control RGCs. Main Outcome Measures: The calcium rise time, decay constant, and sensitivity index of optogenetic-mediated RGC were derived from GCaMP fluorescence recordings from 221 RGCs (animal M1) and 218 RGCs (animal M2) in vivo. Results: After PR ablation, the mean decay constant of the calcium response in RGCs decreased 1.5-fold (standard deviation 1.6 ± 0.5 seconds to 0.6 ± 0.3 seconds) over the 10-week observation period in subject 1 and 2.1-fold (standard deviation 2.5 ± 0.5 seconds to 1.2 ± 0.2 seconds) within 8 weeks in subject 2. Calcium rise time and sensitivity index were stable. Optogenetic reactivation remained possible 2.3 years after PR ablation. Conclusions: Altered calcium dynamics developed in primate foveal RGCs in the weeks after PR ablation. The mean decay constant of optogenetic-mediated calcium responses decreased 1.5- to twofold. This is the first report of this phenomenon in primate retina and further work is required to understand the role these changes play in cell survival and activity. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

8.
eNeuro ; 10(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37491367

RESUMEN

AMPA receptors (AMPARs) are the major mediators of fast excitatory neurotransmission in the retina as in other parts of the brain. In most neurons, the synaptic targeting, pharmacology, and function of AMPARs are influenced by auxiliary subunits including the transmembrane AMPA receptor regulatory proteins (TARPs). However, it is unclear which TARP subunits are present at retinal synapses and how they influence receptor localization and function. Here, we show that TARPɣ2 (stargazin) is associated with AMPARs in the synaptic layers of the mouse, rabbit, macaque, and human retina. In most species, TARPɣ2 expression was high where starburst amacrine cells (SACs) ramify and transcriptomic analyses suggest correspondingly high gene expression in mouse and human SACs. Synaptic expression of GluA2, GluA3, and GluA4 was significantly reduced in a mouse mutant lacking TARPɣ2 expression (stargazer mouse; stg), whereas GluA1 levels were unaffected. AMPAR-mediated light-evoked EPSCs in ON-SACs from stg mice were ∼30% smaller compared with heterozygous littermates. There was also loss of a transient ON pathway-driven GABAergic input to ON-SACs in stg mutants. Direction-selective ganglion cells in the stg mouse showed normal directional tuning, but their surround inhibition and thus spatial tuning was reduced. Our results indicate that TARPɣ2 is required for normal synaptic expression of GluA2, GluA3, and GluA4 in the inner retina. The presence of residual AMPAR expression in the stargazer mutant suggests that other TARP subunits may compensate in the absence of TARPɣ2.


Asunto(s)
Receptores AMPA , Transmisión Sináptica , Animales , Humanos , Ratones , Conejos , Mamíferos/metabolismo , Neuronas/fisiología , Receptores AMPA/metabolismo , Retina/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
9.
Cell Rep ; 42(11): 113440, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37976158

RESUMEN

Retinal ribbon synapses undergo functional changes after eye opening that remain uncharacterized. Using light-flash stimulation and paired patch-clamp recordings, we examined the maturation of the ribbon synapse between rod bipolar cells (RBCs) and AII-amacrine cells (AII-ACs) after eye opening (postnatal day 14) in the mouse retina at near physiological temperatures. We find that light-evoked excitatory postsynaptic currents (EPSCs) in AII-ACs exhibit a slow sustained component that increases in magnitude with advancing age, whereas a fast transient component remains unchanged. Similarly, paired recordings reveal a dual-component EPSC with a slower sustained component that increases during development, even though the miniature EPSC (mEPSC) amplitude and kinetics do not change significantly. We thus propose that the readily releasable pool of vesicles from RBCs increases after eye opening, and we estimate that a short light flash can evoke the release of ∼4,000 vesicles onto a single mature AII-AC.


Asunto(s)
Células Amacrinas , Sinapsis , Ratones , Animales , Células Amacrinas/fisiología , Sinapsis/fisiología , Retina/fisiología , Células Bipolares de la Retina/fisiología , Transmisión Sináptica/fisiología
10.
Cell Rep ; 41(2): 111484, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223749

RESUMEN

Midget and parasol ganglion cells (GCs) represent the major output channels from the primate eye to the brain. On-type midget and parasol GCs exhibit a higher background spike rate and thus can respond more linearly to contrast changes than their Off-type counterparts. Here, we show that a calcium-permeable AMPA receptor (CP-AMPAR) antagonist blocks background spiking and sustained light-evoked firing in On-type GCs while preserving transient light responses. These effects are selective for On-GCs and are occluded by a gap-junction blocker suggesting involvement of AII amacrine cells (AII-ACs). Direct recordings from AII-ACs, cobalt uptake experiments, and analyses of transcriptomic data confirm that CP-AMPARs are expressed by primate AII-ACs. Overall, our data demonstrate that under some background light levels, CP-AMPARs at the rod bipolar to AII-AC synapse drive sustained signaling in On-type GCs and thus contribute to the more linear contrast signaling of the primate On- versus Off-pathway.


Asunto(s)
Células Amacrinas , Receptores AMPA , Células Amacrinas/fisiología , Animales , Calcio , Cobalto , Primates , Receptores Sensibles al Calcio , Retina/fisiología
11.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33188005

RESUMEN

Adapting between scotopic and photopic illumination involves switching the routing of retinal signals between rod and cone-dominated circuits. In the daytime, cone signals pass through parallel On and Off cone bipolar cells (CBCs), that are sensitive to increments and decrements in luminance, respectively. At night, rod signals are routed into these cone-pathways via a key glycinergic interneuron, the AII amacrine cell (AII-AC). AII-ACs also provide On-pathway-driven crossover inhibition to Off-CBCs under photopic conditions. In primates, it is not known whether all Off-bipolar cell types receive functional inputs from AII-ACs. Here, we show that select Off-CBC types receive significantly higher levels of On-pathway-driven glycinergic input than others. The rise and decay kinetics of the glycinergic events are consistent with involvement of the α1 glycine receptor (GlyR) subunit, a result supported by a higher level of GLRA1 transcript in these cells. The Off-bipolar types that receive glycinergic input have sustained physiological properties and include the flat midget bipolar (FMB) cells, which provide excitatory input to the Off-midget ganglion cells (GCs; parvocellular pathway). Our results suggest that only a subset of Off-bipolar cells have the requisite receptors to respond to AII-AC input. Taken together with results in mouse retina, our findings suggest a conserved motif whereby signal output from AII-ACs is preferentially routed into sustained Off-bipolar signaling pathways.


Asunto(s)
Retina , Células Bipolares de la Retina , Células Amacrinas , Animales , Ratones , Primates , Receptores de Glicina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA