Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Immunity ; 44(4): 782-94, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27037192

RESUMEN

Activation of T cells is mediated by the engagement of T cell receptors (TCRs) followed by calcium entry via store-operated calcium channels. Here we have shown an additional route for calcium entry into T cells-through the low-voltage-activated T-type CaV3.1 calcium channel. CaV3.1 mediated a substantial current at resting membrane potentials, and its deficiency had no effect on TCR-initiated calcium entry. Mice deficient for CaV3.1 were resistant to the induction of experimental autoimmune encephalomyelitis and had reduced productions of the granulocyte-macrophage colony-stimulating factor (GM-CSF) by central nervous system (CNS)-infiltrating T helper 1 (Th1) and Th17 cells. CaV3.1 deficiency led to decreased secretion of GM-CSF from in vitro polarized Th1 and Th17 cells. Nuclear translocation of the nuclear factor of activated T cell (NFAT) was also reduced in CaV3.1-deficient T cells. These data provide evidence for T-type channels in immune cells and their potential role in shaping the autoimmune response.


Asunto(s)
Canales de Calcio Tipo T/genética , Encefalomielitis Autoinmune Experimental/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factores de Transcripción NFATC/metabolismo , Células TH1/inmunología , Células Th17/inmunología , Transporte Activo de Núcleo Celular/genética , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Calcio/metabolismo , Citocinas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Proc Natl Acad Sci U S A ; 117(43): 26822-26832, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33033227

RESUMEN

The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.


Asunto(s)
Señalización del Calcio , Glándulas Mamarias Animales/fisiología , Eyección Láctea , Animales , Células Epiteliales/fisiología , Humanos , Microscopía Intravital , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/diagnóstico por imagen , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Transgénicos , Cadenas Ligeras de Miosina/metabolismo
3.
Nat Immunol ; 9(1): 89-96, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18059270

RESUMEN

CRACM1 (also called Orai1) constitutes the pore subunit of store-operated calcium release-activated calcium channels. A point mutation in the gene encoding CRACM1 is associated with severe combined immunodeficiency disease in humans. Here we generated CRACM1-deficient mice in which beta-galactosidase activity 'reported' CRACM1 expression. CRACM1-deficient mice were smaller in size. Mast cells derived from CRACM1-deficient mice showed grossly defective degranulation and cytokine secretion, and the allergic reactions elicited in vivo were inhibited in CRACM1-deficient mice. We detected robust CRACM1 expression in skeletal muscles and some regions of the brain, heart and kidney but not in the lymphoid regions of thymus and spleen. In contrast, we found CRACM2 expression to be much higher in mouse T cells. In agreement with those findings, the store-operated calcium influx and development and proliferation of CRACM1-deficient T cells was unaffected. Thus, CRACM1 is crucial in mouse mast cell effector function, but mouse T cell calcium release-activated calcium channels are functional in the absence of CRACM1.


Asunto(s)
Canales de Calcio/fisiología , Mastocitos/inmunología , Animales , Calcio/metabolismo , Canales de Calcio/biosíntesis , Degranulación de la Célula , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Mastocitos/metabolismo , Ratones , Ratones Noqueados , Proteína ORAI1 , Proteína ORAI2 , Especificidad de Órganos , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/fisiología , Linfocitos T/citología , Linfocitos T/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(52): 13786-13791, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229844

RESUMEN

A systems-level understanding of cytokine-mediated, intertissue signaling is one of the keys to developing fundamental insight into the links between aging and inflammation. Here, we employed Drosophila, a routine model for analysis of cytokine signaling pathways in higher animals, to identify a receptor for the growth-blocking peptide (GBP) cytokine. Having previously established that the phospholipase C/Ca2+ signaling pathway mediates innate immune responses to GBP, we conducted a dsRNA library screen for genes that modulate Ca2+ mobilization in Drosophila S3 cells. A hitherto orphan G protein coupled receptor, Methuselah-like receptor-10 (Mthl10), was a significant hit. Secondary screening confirmed specific binding of fluorophore-tagged GBP to both S3 cells and recombinant Mthl10-ectodomain. We discovered that the metabolic, immunological, and stress-protecting roles of GBP all interconnect through Mthl10. This we established by Mthl10 knockdown in three fly model systems: in hemocyte-like Drosophila S2 cells, Mthl10 knockdown decreases GBP-mediated innate immune responses; in larvae, Mthl10 knockdown decreases expression of antimicrobial peptides in response to low temperature; in adult flies, Mthl10 knockdown increases mortality rate following infection with Micrococcus luteus and reduces GBP-mediated secretion of insulin-like peptides. We further report that organismal fitness pays a price for the utilization of Mthl10 to integrate all of these various homeostatic attributes of GBP: We found that elevated GBP expression reduces lifespan. Conversely, Mthl10 knockdown extended lifespan. We describe how our data offer opportunities for further molecular interrogation of yin and yang between homeostasis and longevity.


Asunto(s)
Citocinas/metabolismo , Proteínas de Drosophila/metabolismo , Longevidad/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Estrés Fisiológico/fisiología , Animales , Citocinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores Acoplados a Proteínas G/genética
5.
J Neurosci ; 38(4): 887-900, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29229703

RESUMEN

Pathological pain is a common and debilitating condition that is often poorly managed. Central sensitization is an important mechanism underlying pathological pain. However, candidate molecules involved in central sensitization remain unclear. Store-operated calcium channels (SOCs) mediate important calcium signals in nonexcitable and excitable cells. SOCs have been implicated in a wide variety of human pathophysiological conditions, including immunodeficiency, occlusive vascular diseases, and cancer. However, the role of SOCs in CNS disorders has been relatively unexplored. Orai1, a key component of SOCs, is expressed in the human and rodent spinal cord dorsal horn, but its functional significance in dorsal horn neurons is poorly understood. Here we sought to explore a potential role of Orai1 in the modulation of neuronal excitability and A-type potassium channels involved in pain plasticity. Using both male and female Orai1 knock-out mice, we found that activation of Orai1 increased neuronal excitability and reduced A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway in dorsal horn neurons. Orai1 deficiency significantly decreased acute pain induced by noxious stimuli, nearly eliminated the second phase of formalin-induced nociceptive response, markedly attenuated carrageenan-induced ipsilateral pain hypersensitivity and abolished carrageenan-induced contralateral mechanical allodynia. Consistently, carrageenan-induced increase in neuronal excitability was abolished in the dorsal horn from Orai1 mutant mice. These findings uncover a novel signaling pathway involved in the pain process and central sensitization. Our study also reveals a novel link among Orai1, ERK, A-type potassium channels, and neuronal excitability.SIGNIFICANCE STATEMENT Orai1 is a key component of store-operated calcium channels (SOCs) in many cell types. It has been implicated in such pathological conditions as immunodeficiency, autoimmunity, and cancer. However, the role of Orai1 in CNS disorders remains poorly understood. The functional significance of Orai1 in neurons is elusive. Here we demonstrate that activation of Orai1 modulates neuronal excitability and Kv4-containing A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway. Genetic knock-out of Orai1 nearly eliminates the second phase of formalin-induced pain and markedly attenuates carrageenan-induced pain hypersensitivity and neuronal excitability. These findings reveal a novel link between Orai1 and neuronal excitability and advance our understanding of central sensitization.


Asunto(s)
Sensibilización del Sistema Nervioso Central/fisiología , Proteína ORAI1/metabolismo , Células del Asta Posterior/metabolismo , Animales , Femenino , Hiperalgesia/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Noqueados , Dolor/metabolismo , Proteína Quinasa C/metabolismo , Canales de Potasio Shal/metabolismo
6.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 900-906, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27913208

RESUMEN

Store-operated calcium channels provide calcium signals to the cytoplasm of a wide variety of cell types. The basic components of this signaling mechanism include a mechanism for discharging Ca2+ stores (commonly but not exclusively phospholipase C and inositol 1,4,5-trisphosphate), a sensor in the endoplasmic reticulum that also serves as an activator of the plasma membrane channel (STIM1 and STIM2), and the store-operated channel (Orai1, 2 or 3). The advent of mice genetically altered to reduce store-operated calcium entry globally or in specific cell types has provided important tools to understand the functions of these widely encountered channels in specific and clinically important physiological systems. This review briefly discusses the history and cellular properties of store-operated calcium channels, and summarizes selected studies of their physiological functions in specific physiological or pathological contexts. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
Canales de Calcio/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Ratones Transgénicos
7.
Physiology (Bethesda) ; 32(4): 332-342, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28615316

RESUMEN

In this review article, we discuss the different gene products and translational variants of ORAI proteins and their contribution to the makeup of different native calcium-conducting channels with distinct compositions and modes of activation. We also review the different modes of regulation of these distinct calcium channels and their impact on downstream cellular signaling controlling important physiological functions.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Animales , Señalización del Calcio/fisiología , Humanos
8.
Proc Natl Acad Sci U S A ; 112(18): 5827-32, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25902527

RESUMEN

The nourishment of neonates by nursing is the defining characteristic of mammals. However, despite considerable research into the neural control of lactation, an understanding of the signaling mechanisms underlying the production and expulsion of milk by mammary epithelial cells during lactation remains largely unknown. Here we demonstrate that a store-operated Ca(2+) channel subunit, Orai1, is required for both optimal Ca(2+) transport into milk and for milk ejection. Using a novel, 3D imaging strategy, we visualized live oxytocin-induced alveolar unit contractions in the mammary gland, and we demonstrated that in this model milk is ejected by way of pulsatile contractions of these alveolar units. In mammary glands of Orai1 knockout mice, these contractions are infrequent and poorly coordinated. We reveal that oxytocin also induces a large transient release of stored Ca(2+) in mammary myoepithelial cells followed by slow, irregular Ca(2+) oscillations. These oscillations, and not the initial Ca(2+) transient, are mediated exclusively by Orai1 and are absolutely required for milk ejection and pup survival, an observation that redefines the signaling processes responsible for milk ejection. These findings clearly demonstrate that Ca(2+) is not just a substrate for nutritional enrichment in mammals but is also a master regulator of the spatiotemporal signaling events underpinning mammary alveolar unit contraction. Orai1-dependent Ca(2+) oscillations may represent a conserved language in myoepithelial cells of other secretory epithelia, such as sweat glands, potentially shedding light on other Orai1 channelopathies, including anhidrosis (an inability to sweat).


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/química , Animales , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Imagenología Tridimensional , Iones/química , Lactancia , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Leche/metabolismo , Proteína ORAI1 , Oscilometría , Oxitocina/química , Transducción de Señal
9.
Biochem J ; 473(2): 201-10, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26554024

RESUMEN

Sustained activation of extracellular-signal-regulated kinase (ERK) has an important role in the decision regarding the cell fate of B-lymphocytes. Recently, we demonstrated that the diacylglycerol-activated non-selective cation channel canonical transient receptor potential 3 (TRPC3) is required for the sustained ERK activation induced by the B-cell receptor. However, the signalling mechanism underlying TRPC3-mediated ERK activation remains elusive. In the present study, we have shown that TRPC3 mediates Ca(2+) influx to sustain activation of protein kinase D (PKD) in a protein kinase C-dependent manner in DT40 B-lymphocytes. The later phase of ERK activation depends on the small G-protein Rap1, known as a downstream target of PKD, whereas the earlier phase of ERK activation depends on the Ras protein. It is of interest that sustained ERK phosphorylation is required for the full induction of the immediate early gene Egr-1 (early growth response 1). These results suggest that TRPC3 reorganizes the BCR signalling complex by switching the subtype of small G-proteins to sustain ERK activation in B-lymphocytes.


Asunto(s)
Linfocitos B/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa C/metabolismo , Canales Catiónicos TRPC/biosíntesis , Proteínas de Unión al GTP rap1/metabolismo , Animales , Línea Celular , Pollos
10.
Adv Exp Med Biol ; 993: 3-13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900906

RESUMEN

This second edition volume will present an updated, state-of-the art description and analysis of the rapidly expanding field of store-operated Ca2+ entry (SOCE). And this first part will deal with the most fundamental mechanistic concepts underlying this process. In this brief introduction, I will try to summarize the historical development of the concept of store-operated Ca2+ entry and say a bit about some recent work that speaks to its general function in cell signaling. Much of the material below is taken from the Introduction to the first edition, updated for the second edition.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Proteínas de la Membrana/metabolismo
11.
Adv Exp Med Biol ; 981: 205-214, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29594863

RESUMEN

Store-operated calcium entry is a mechanism of Ca2+ signaling that has evolved from theory to molecules over a period of 30 years. This brief overview summarizes the major milestones that have led to the current concepts regarding the mechanisms and regulation of this most widely encountered of calcium signaling mechanisms.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Animales , Bioquímica/historia , Calcio/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos
12.
FASEB J ; 29(7): 3003-13, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25837581

RESUMEN

Stromal interaction molecule 1 (STIM1) is a Ca(2+) sensor protein that initiates store-operated calcium entry (SOCE). STIM1 is known to be involved in the chemoattractant signaling pathway for FPR1 in cell lines, but its role in in vivo functioning of neutrophils is unclear. Plaque-type psoriasis is a chronic inflammatory skin disorder associated with chemoattractants driving neutrophils into the epidermis. We investigated the involvement of STIM1 in neutrophil chemotaxis in vitro, as well as during chronic psoriatic inflammation. To this end, we used conditional knockout (KO) mice lacking STIM1 in cells of myeloid lineage (STIM1(fl/fl) LysM-cre). We demonstrate that STIM1 is required for chemotaxis because of multiple chemoattractants in mouse neutrophils in vitro. Using an imiquimod-induced psoriasis-like skin model, we show that KO mice had less neutrophil infiltration in the epidermis than controls, whereas neither chemoattractant production in the epidermis nor macrophage migration was decreased. KO mice displayed a more rapid reversal of the outward signs of psoriasis (plaques). Thus, KO of STIM1 impairs neutrophil contribution to psoriatic inflammation. Our data provide new insights to our understanding of how STIM1 orchestrates the cellular behavior underlying chemotaxis and illustrate the important role of SOCE in a disease-related pathologic model.


Asunto(s)
Canales de Calcio/fisiología , Neutrófilos/patología , Neutrófilos/fisiología , Psoriasis/patología , Psoriasis/fisiopatología , Aminoquinolinas/toxicidad , Animales , Canales de Calcio/deficiencia , Canales de Calcio/genética , Quimiotaxis de Leucocito/fisiología , Modelos Animales de Enfermedad , Células HL-60 , Humanos , Imiquimod , Técnicas In Vitro , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Infiltración Neutrófila/fisiología , Psoriasis/inducido químicamente , ARN Interferente Pequeño/genética , Transducción de Señal , Piel/patología , Piel/fisiopatología , Molécula de Interacción Estromal 1
13.
J Cell Sci ; 126(Pt 2): 605-12, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23203806

RESUMEN

The uppermost thin layer on the surface of the skin, called the epidermis, is responsible for the barrier function of the skin. The epidermis has a multilayered structure in which each layer consists of keratinocytes (KCs) of different differentiation status. The integrity of KC differentiation is crucial for the function of skin and its loss causes or is accompanied by skin diseases. Intracellular and extracellular Ca(2+) is known to play important roles in KC differentiation. However, the molecular mechanisms underlying Ca(2+) regulation of KC differentiation are still largely unknown. Store-operated Ca(2+) entry (SOCE) is a major Ca(2+) influx pathway in most non-excitable cells. SOCE is evoked in response to a fall in Ca(2+) concentration in the endoplasmic reticulum. Two proteins have been identified as essential components of SOCE: STIM1, a Ca(2+) sensor in the ER, and Orai1, a subunit of Ca(2+) channels in the plasma membrane. In this study, we analyzed the contribution of SOCE to KC growth and differentiation using RNAi knockdown of STIM1 and Orai1 in the human keratinocyte cell line, HaCaT. KC differentiation was induced by a switch in extracellular Ca(2+) concentration from low (0.03 mM; undifferentiated KCs) to high (1.8 mM; differentiated KCs). This Ca(2+) switch triggers phospholipase-C-mediated intracellular Ca(2+) signals (Ca(2+)-switch-induced Ca(2+) response), which would probably involve the activation of SOCE. Knockdown of either STIM1 or Orai1 strongly suppressed SOCE and almost completely abolished the Ca(2+)-switch-induced Ca(2+) responses, resulting in impaired expression of keratin1, an early KC differentiation marker. Furthermore, loss of either STIM1 or Orai1 suppressed normal growth of HaCaT cells in low Ca(2+) and inhibited the growth arrest in response to a Ca(2+) switch. These results demonstrate that SOCE plays multiple crucial roles in KC differentiation and function.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canales de Calcio/deficiencia , Canales de Calcio/genética , Diferenciación Celular/fisiología , Línea Celular , Membrana Celular/metabolismo , Células Epidérmicas , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteína ORAI1 , Procesamiento Proteico-Postraduccional , Molécula de Interacción Estromal 1
14.
J Physiol ; 592(5): 927-39, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24297846

RESUMEN

Lacrimal glands function to produce an aqueous layer, or tear film, that helps to nourish and protect the ocular surface. Lacrimal glands secrete proteins, electrolytes and water, and loss of gland function can result in tear film disorders such as dry eye syndrome, a widely encountered and debilitating disease in ageing populations. To combat these disorders, understanding the underlying molecular signalling processes that control lacrimal gland function will give insight into corrective therapeutic approaches. Previously, in single lacrimal cells isolated from lacrimal glands, we demonstrated that muscarinic receptor activation stimulates a phospholipase C-coupled signalling cascade involving the inositol trisphosphate-dependent mobilization of intracellular calcium and the subsequent activation of store-operated calcium entry (SOCE). Since intracellular calcium stores are finite and readily exhausted, the SOCE pathway is a critical process for sustaining and maintaining receptor-activated signalling. Recent studies have identified the Orai family proteins as critical components of the SOCE channel activity in a wide variety of cell types. In this study we characterize the role of Orai1 in the function of lacrimal glands using a mouse model in which the gene for the calcium entry channel protein, Orai1, has been deleted. Our data demonstrate that lacrimal acinar cells lacking Orai1 do not exhibit SOCE following activation of the muscarinic receptor. In comparison with wild-type and heterozygous littermates, Orai1 knockout mice showed a significant reduction in the stimulated tear production following injection of pilocarpine, a muscarinic receptor agonist. In addition, calcium-dependent, but not calcium-independent exocytotic secretion of peroxidase was eliminated in glands from knockout mice. These studies indicate a critical role for Orai1-mediated SOCE in lacrimal gland signalling and function.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Exocitosis/fisiología , Aparato Lagrimal/fisiología , Lágrimas/metabolismo , Animales , Canales de Calcio/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Proteína ORAI1
15.
J Cell Sci ; 125(Pt 18): 4354-61, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22641696

RESUMEN

Store-operated calcium entry is an almost ubiquitous signaling pathway in eukaryotic cells. The plasma membrane store-operated channels are comprised of subunits of the recently discovered Orai proteins, the major one being Orai1.We have discovered that native Orai1, as well as expressed Orai1, exists in two forms in similar quantities: a longer form (Orai1α) of approximately 33 kDa, and a shorter form (Orai1ß) of approximately 23 kDa. The Orai1ß form arises from alternative translation initiation from a methionine at position 64, and possibly also 71, in the longer Orai1α form. In the sequence upstream of the initiation site of Orai1ß, there is a poly-arginine sequence previously suggested to be involved in interaction of Orai1 with plasma membrane phosphatidylinositol-4,5-bisphosphate. The loss of this phospholipid binding domain would be expected to influence the mobility of Orai1 protein in the plasma membrane. Indeed, experiments utilizing fluorescence recovery after photobleaching (FRAP) revealed that the recovery half-time for Orai1ß was significantly faster than for Orai1α. Since Orai1 must diffuse to sites of interaction with the Ca(2+) sensor, STIM1, these two mobilities might provide for efficient recruitment of Orai1 subunits to sites of store-operated Ca(2+) entry during agonist-induced Ca(2+) signaling.


Asunto(s)
Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Calcio/metabolismo , Canales de Calcio/química , Señalización del Calcio , Recuperación de Fluorescencia tras Fotoblanqueo , Células HEK293 , Humanos , Proteína ORAI1 , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Fracciones Subcelulares/metabolismo
16.
FASEB J ; 26(4): 1484-92, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22198385

RESUMEN

Bone diseases such as postmenopausal osteoporosis are primarily caused by excessive formation and activity of osteoclasts (OCLs). Receptor activator of nuclear factor-κB ligand (RANKL) is a key initiating cytokine for OCL differentiation and function. RANKL induces calcium (Ca(2+)) oscillations, resulting in selective and robust induction of nuclear factor of activated T cells c1 (NFATc1), a Ca(2+)-responsive transcription factor that drives osteoclastogenesis. Store-operated Ca(2+) entry (SOCE) is a major Ca(2+) influx pathway in most nonexcitable cell types and is activated by any stimulus that depletes Ca(2+) stores in the endoplasmic reticulum. Although the role of Orai1, a SOCE channel in the plasma membrane, in maintaining Ca(2+) oscillations and transactivation of NFAT in other cell types is well known, its contribution to osteoclastogenesis remains unclear. We show here that silencing of the Orai1 gene with viral delivery of shRNA reduces SOCE and inhibits RANKL-induced osteoclastogenesis of RAW264.7 cells, a murine monocyte/macrophage cell line, by suppressing the induction of NFATc1. This was accompanied by defective induction of OCL-specific genes, such as tartrate-resistant acid phosphatase and immunoreceptor OCL-associated receptor, which are known to be direct transcriptional targets of NFATc1 during osteoclastogenesis. In addition, maturation of OCLs was abrogated by defective cell fusion of pre-OCLs depleted of Orai1, consistent with defective RANKL-mediated induction of d2 isoform of vacuolar ATPase V(o) domain that is involved in cell fusion of pre-OCLs. We found that the functional bone resorbing capacity was severely impaired in OCLs depleted of Orai1, potentially related to the observed decrease in the induction of cathepsin K, a major bone matrix degrading protease. Our results indicate that Orai1 plays a critical role in the differentiation and function of OCLs, suggesting that Orai1 might be a potential therapeutic target for the treatment or prevention of bone loss caused by OCLs.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Diferenciación Celular/fisiología , Factores de Transcripción NFATC/metabolismo , Osteoclastos/fisiología , Animales , Resorción Ósea/metabolismo , Canales de Calcio/genética , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Factores de Transcripción NFATC/genética , Proteína ORAI1 , Osteoclastos/citología , Ligando RANK/genética , Ligando RANK/metabolismo , ARN Interferente Pequeño/metabolismo
17.
Curr Top Membr ; 71: 109-23, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23890113

RESUMEN

Activation of phospholipase C results in release of intracellular Ca(2+) and activation of Ca(2+) entry. Plasma membrane Ca(2+) entry most commonly is signaled by the depletion of intracellular Ca(2+) stores, a mechanism referred to as capacitative calcium entry or store-operated calcium entry (SOCE). The major players in the SOCE pathway are a Ca(2+) sensor protein, STIM1, and a channel subunit, Orai1. STIM1 activates Orai channels by a mechanism that depends upon its colocalization with Orai at endoplasmic reticulum-plasma membrane junctions. Signaling proteins often occur in multiple forms with distinct properties and/or functions. Such forms arise by a number of mechanisms, including covalent modification, alternative splicing, and alternative translation initiation. This chapter summarizes and discusses recent work revealing alternative forms of STIM1 and Orai1, and the physiological consequences of these modified proteins.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/química , Mitosis , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteína ORAI1 , Fosforilación , Estructura Terciaria de Proteína , Molécula de Interacción Estromal 1
18.
Immunol Rev ; 231(1): 10-22, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19754887

RESUMEN

Rapid to moderately rapid changes in intracellular Ca2+ concentration, or Ca2+ signals, control a variety of critical cellular functions in the immune system. These signals are comprised of Ca2+ release from intracellular stores coordinated with Ca2+ influx across the plasma membrane. The most common mechanisms by which these two modes of signaling occur is through inositol 1,4,5-trisphosphate (IP3)-induced release of Ca2+ from the endoplasmic reticulum (ER) and store-operated Ca2+ entry across the plasma membrane. The latter process was postulated over 20 years ago, and in just the past few years, the key molecular players have been discovered: STIM proteins serve as sensors of Ca2+ within the ER which communicate with and activate plasma membrane store-operated channels composed of Orai subunits. The process of store-operated Ca2+ entry provides support for oscillating Ca2+ signals from the ER and also provides direct activator Ca2+ that signals to a variety of downstream effectors.


Asunto(s)
Calcio/metabolismo , Sistema Inmunológico/citología , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Sistema Inmunológico/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal
19.
Biochim Biophys Acta ; 1813(5): 979-83, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21075150

RESUMEN

It has long been known that many bone diseases, including osteoporosis, involve abnormalities in osteoclastic bone resorption. As a result, there has been intense study of the mechanisms that regulate both the differentiation and bone resorbing function of osteoclast cells. Calcium (Ca(2+)) signaling appears to play a critical role in the differentiation and functions of osteoclasts. Cytoplasmic Ca(2+) oscillations occur during RANKL-mediated osteoclastogenesis. Ca(2+) oscillations provide a digital Ca(2+) signal that induces osteoclasts to up-regulate and autoamplify nuclear factor of activated T cells c1 (NFATc1), a Ca(2+)/calcineurin-dependent master regulator of osteoclastogenesis. Here we review previous studies on Ca(2+) signaling in osteoclasts as well as recent breakthroughs in understanding the basis of RANKL-induced Ca(2+) oscillations, and we discuss possible molecular players in this specialized Ca(2+) response that appears pivotal for normal bone function. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Asunto(s)
Señalización del Calcio , Osteoclastos/metabolismo , Animales , Calcio/metabolismo , Humanos , Ligando RANK/metabolismo
20.
J Cell Sci ; 123(Pt 6): 927-38, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20179100

RESUMEN

Ca(2+) signaling mediated by phospholipase C that produces inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] and diacylglycerol (DAG) controls lymphocyte activation. In contrast to store-operated Ca(2+) entry activated by Ins(1,4,5)P(3)-induced Ca(2+) release from endoplasmic reticulum, the importance of DAG-activated Ca(2+) entry remains elusive. Here, we describe the physiological role of DAG-activated Ca(2+) entry channels in B-cell receptor (BCR) signaling. In avian DT40 B cells, deficiency of transient receptor potential TRPC3 at the plasma membrane (PM) impaired DAG-activated cation currents and, upon BCR stimulation, the sustained translocation to the PM of protein kinase Cbeta (PKCbeta) that activated extracellular signal-regulated kinase (ERK). Notably, TRPC3 showed direct association with PKCbeta that maintained localization of PKCbeta at the PM. Thus, TRPC3 functions as both a Ca(2+)-permeable channel and a protein scaffold at the PM for downstream PKCbeta activation in B cells.


Asunto(s)
Linfocitos B/enzimología , Señalización del Calcio , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Quinasa C/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Linfocitos B/citología , Canales de Calcio/metabolismo , Línea Celular , Membrana Celular/enzimología , Pollos , Diglicéridos/metabolismo , Activación Enzimática , Células HeLa , Humanos , Activación del Canal Iónico , Ratones , Modelos Biológicos , Factores de Transcripción NFATC/metabolismo , Unión Proteica , Proteína Quinasa C beta , Transporte de Proteínas , Receptores de Antígenos de Linfocitos B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA