Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Glia ; 71(4): 957-973, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36537556

RESUMEN

Alzheimer's disease (AD) is becoming increasingly prevalent worldwide. It represents one of the greatest medical challenges as no pharmacologic treatments are available to prevent disease progression. Astrocytes play crucial functions within neuronal circuits by providing metabolic and functional support, regulating interstitial solute composition, and modulating synaptic transmission. In addition to these physiological functions, growing evidence points to an essential role of astrocytes in neurodegenerative diseases like AD. Early-stage AD is associated with hypometabolism and oxidative stress. Contrary to neurons that are vulnerable to oxidative stress, astrocytes are particularly resistant to mitochondrial dysfunction and are therefore more resilient cells. In our study, we leveraged astrocytic mitochondrial uncoupling and examined neuronal function in the 3xTg AD mouse model. We overexpressed the mitochondrial uncoupling protein 4 (UCP4), which has been shown to improve neuronal survival in vitro. We found that this treatment efficiently prevented alterations of hippocampal metabolite levels observed in AD mice, along with hippocampal atrophy and reduction of basal dendrite arborization of subicular neurons. This approach also averted aberrant neuronal excitability observed in AD subicular neurons and preserved episodic-like memory in AD mice assessed in a spatial recognition task. These findings show that targeting astrocytes and their mitochondria is an effective strategy to prevent the decline of neurons facing AD-related stress at the early stages of the disease.


Asunto(s)
Enfermedad de Alzheimer , Mitocondrias , Proteínas Desacopladoras Mitocondriales , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/genética , Proteínas Desacopladoras Mitocondriales/metabolismo
2.
J Neurosci ; 39(23): 4422-4433, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926749

RESUMEN

The discovery of a G-protein-coupled receptor for lactate named hydroxycarboxylic acid receptor 1 (HCAR1) in neurons has pointed to additional nonmetabolic effects of lactate for regulating neuronal network activity. In this study, we characterized the intracellular pathways engaged by HCAR1 activation, using mouse primary cortical neurons from wild-type (WT) and HCAR1 knock-out (KO) mice from both sexes. Using whole-cell patch clamp, we found that the activation of HCAR1 with 3-chloro-5-hydroxybenzoic acid (3Cl-HBA) decreased miniature EPSC frequency, increased paired-pulse ratio, decreased firing frequency, and modulated membrane intrinsic properties. Using fast calcium imaging, we show that HCAR1 agonists 3,5-dihydroxybenzoic acid, 3Cl-HBA, and lactate decreased by 40% spontaneous calcium spiking activity of primary cortical neurons from WT but not from HCAR1 KO mice. Notably, in neurons lacking HCAR1, the basal activity was increased compared with WT. HCAR1 mediates its effect in neurons through a Giα-protein. We observed that the adenylyl cyclase-cAMP-protein kinase A axis is involved in HCAR1 downmodulation of neuronal activity. We found that HCAR1 interacts with adenosine A1, GABAB, and α2A-adrenergic receptors, through a mechanism involving both its Giα and Gißγ subunits, resulting in a complex modulation of neuronal network activity. We conclude that HCAR1 activation in neurons causes a downmodulation of neuronal activity through presynaptic mechanisms and by reducing neuronal excitability. HCAR1 activation engages both Giα and Gißγ intracellular pathways to functionally interact with other Gi-coupled receptors for the fine tuning of neuronal activity.SIGNIFICANCE STATEMENT Expression of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1) was recently described in neurons. Here, we describe the physiological role of this G-protein-coupled receptor (GPCR) and its activation in neurons, providing information on its expression and mechanism of action. We dissected out the intracellular pathway through which HCAR1 activation tunes down neuronal network activity. For the first time, we provide evidence for the functional cross talk of HCAR1 with other GPCRs, such as GABAB, adenosine A1- and α2A-adrenergic receptors. These results set HCAR1 as a new player for the regulation of neuronal network activity acting in concert with other established receptors. Thus, HCAR1 represents a novel therapeutic target for pathologies characterized by network hyperexcitability dysfunction, such as epilepsy.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/fisiología , Lactatos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Potenciales de Acción , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , AMP Cíclico/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Cultivo Primario de Células , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Sistemas de Mensajero Secundario/efectos de los fármacos
3.
EMBO J ; 33(20): 2388-407, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25147362

RESUMEN

Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción MEF2/genética , Proteínas de la Membrana/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Neuronas/fisiología , Animales , Calcio/metabolismo , Muerte Celular , Línea Celular , Células Cultivadas , Regulación hacia Abajo , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfohidrolasas , Homeostasis , Humanos , Factores de Transcripción MEF2/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Modelos Animales , Mutación , Ratas , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
4.
Cereb Cortex ; 27(3): 2365-2384, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27075036

RESUMEN

In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity. We show that the structural and functional significance of the Homer1b/c-mGlu5 interaction is to relocate endoplasmic reticulum (ER) to the proximity of the plasma membrane and to optimize Ca2+ signaling and glutamate release. We also show that in reactive astrocytes the short dominant-negative splice variant Homer1a is upregulated. Homer1a, by precluding the mGlu5-ER interaction decreases the intensity of Ca2+ signaling thus limiting the intensity and the duration of glutamate release by astrocytes. Hindering upregulation of Homer1a with a local injection of short interfering RNA in vivo restores mGlu5-mediated Ca2+ signaling and glutamate release and sensitizes astrocytes to apoptosis. We propose that Homer1a may represent one of the cellular mechanisms by which inflammatory astrocytic reactions are beneficial for limiting brain injury.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Proteínas de Andamiaje Homer/metabolismo , Animales , Isquemia Encefálica/metabolismo , Cationes Bivalentes/metabolismo , Células Cultivadas , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Retículo Endoplásmico/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Andamiaje Homer/antagonistas & inhibidores , Proteínas de Andamiaje Homer/genética , Humanos , Recién Nacido , Masculino , Ratones Transgénicos , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Técnicas de Cultivo de Tejidos
5.
Proc Natl Acad Sci U S A ; 110(51): 20364-71, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24277826

RESUMEN

A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.


Asunto(s)
Autofagia/efectos de los fármacos , Isquemia Encefálica/metabolismo , Péptidos de Penetración Celular/farmacología , Proteínas del Tejido Nervioso/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Isquemia Encefálica/patología , Glicósidos Cardíacos/farmacología , Células HeLa , Humanos , Ratas , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores
6.
Ann Neurol ; 76(5): 695-711, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25146903

RESUMEN

OBJECTIVE: Neonatal hypoxic-ischemic encephalopathy (HIE) still carries a high burden by its mortality and long-term neurological morbidity in survivors. Apart from hypothermia, there is no acknowledged therapy for HIE, reflecting the lack of mechanistic understanding of its pathophysiology. (Macro)autophagy, a physiological intracellular process of lysosomal degradation, has been proposed to be excessively activated in excitotoxic conditions such as HIE. The present study examines whether neuronal autophagy in the thalamus of asphyxiated human newborns or P7 rats is enhanced and related to neuronal death processes. METHODS: Neuronal autophagy and cell death were evaluated in the thalamus (frequently injured in severe HIE) of both human newborns who died after severe HIE (n = 5) and P7 hypoxic-ischemic rats (Rice-Vannuci model). Autophagic (LC3, p62), lysosomal (LAMP1, cathepsins), and cell death (TUNEL, caspase-3) markers were studied by immunohistochemistry in human and rat brain sections, and by additional methods in rats (immunoblotting, histochemistry, and electron microscopy). RESULTS: Following severe perinatal asphyxia in both humans and rats, thalamic neurons displayed up to 10-fold (p < 0.001) higher numbers of autophagosomes and lysosomes, implying an enhanced autophagic flux. The highly autophagic neurons presented strong features of apoptosis. These findings were confirmed and elucidated in more detail in rats. INTERPRETATION: These results show for the first time that autophagy is enhanced in severe HIE in dying thalamic neurons of human newborns, as in rats. Experimental neuroprotective strategies targeting autophagy could thus be a promising lead to follow for the development of future therapeutic approaches.


Asunto(s)
Asfixia Neonatal/patología , Autofagia , Muerte Celular , Neuronas/patología , Tálamo/patología , Animales , Femenino , Humanos , Recién Nacido , Lisosomas/enzimología , Masculino , Ratas
7.
J Neurosci ; 33(8): 3413-23, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426669

RESUMEN

Glial cells are increasingly recognized as active players that profoundly influence neuronal synaptic transmission by specialized signaling pathways. In particular, astrocytes have been shown recently to release small molecules, such as the amino acids l-glutamate and d-serine as "gliotransmitters," which directly control the efficacy of adjacent synapses. However, it is still controversial whether gliotransmitters are released from a cytosolic pool or by Ca(2+)-dependent exocytosis from secretory vesicles, i.e., by a mechanism similar to the release of synaptic vesicles in synapses. Here we report that rat cortical astrocytes contain storage vesicles that display morphological and biochemical features similar to neuronal synaptic vesicles. These vesicles share some, but not all, membrane proteins with synaptic vesicles, including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) synaptobrevin 2, and contain both l-glutamate and d-serine. Furthermore, they show uptake of l-glutamate and d-serine that is driven by a proton electrochemical gradient. d-Serine uptake is associated with vesicle acidification and is dependent on chloride. Whereas l-serine is not transported, serine racemase, the synthesizing enzyme for d-serine, is anchored to the membrane of the vesicles, allowing local generation of d-serine. Finally, we reveal a previously unexpected mutual vesicular synergy between d-serine and l-glutamate filling in glia vesicles. We conclude that astrocytes contain vesicles capable of storing and releasing d-serine, l-glutamate, and most likely other neuromodulators in an activity-dependent manner.


Asunto(s)
Astrocitos/metabolismo , Neuroglía/metabolismo , Serina/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Astrocitos/ultraestructura , Transporte Biológico Activo/fisiología , Células Cultivadas , Femenino , Masculino , Neuroglía/fisiología , Neuroglía/ultraestructura , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Vesículas Sinápticas/ultraestructura
8.
J Neurosci ; 33(19): 8185-201, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23658158

RESUMEN

Neuronal nitric oxide synthase (nNOS) and p38MAPK are strongly implicated in excitotoxicity, a mechanism common to many neurodegenerative conditions, but the intermediary mechanism is unclear. NOS1AP is encoded by a gene recently associated with sudden cardiac death, diabetes-associated complications, and schizophrenia (Arking et al., 2006; Becker et al., 2008; Brzustowicz, 2008; Lehtinen et al., 2008). Here we find it interacts with p38MAPK-activating kinase MKK3. Excitotoxic stimulus induces recruitment of NOS1AP to nNOS in rat cortical neuron culture. Excitotoxic activation of p38MAPK and subsequent neuronal death are reduced by competing with the nNOS:NOS1AP interaction and by knockdown with NOS1AP-targeting siRNAs. We designed a cell-permeable peptide that competes for the unique PDZ domain of nNOS that interacts with NOS1AP. This peptide inhibits NMDA-induced recruitment of NOS1AP to nNOS and in vivo in rat, doubles surviving tissue in a severe model of neonatal hypoxia-ischemia, a major cause of neonatal death and pediatric disability. The highly unusual sequence specificity of the nNOS:NOS1AP interaction and involvement in excitotoxic signaling may provide future opportunities for generation of neuroprotectants with high specificity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Análisis de Varianza , Animales , Animales Recién Nacidos , Encéfalo/citología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hipoxia/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , L-Lactato Deshidrogenasa/metabolismo , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/genética , Péptidos/farmacología , Conformación Proteica , ARN Interferente Pequeño/farmacología , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección
9.
Cell Death Dis ; 15(5): 363, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796484

RESUMEN

Macroautophagy (hereafter called autophagy) is an essential physiological process of degradation of organelles and long-lived proteins. The discovery of autosis, a Na+/K+-ATPase (ATP1)-dependent type of autophagic cell death with specific morphological and biochemical features, has strongly contributed to the acceptance of a pro-death role of autophagy. However, the occurrence and relevance of autosis in neurons has never been clearly investigated, whereas we previously provided evidence that autophagy mechanisms could be involved in neuronal death in different in vitro and in vivo rodent models of hypoxia-ischemia (HI) and that morphological features of autosis were observed in dying neurons following rat perinatal cerebral HI. In the present study, we demonstrated that neuronal autosis could occur in primary cortical neurons using two different stimulations enhancing autophagy flux and neuronal death: a neurotoxic concentration of Tat-BECN1 (an autophagy-inducing peptide) and a hypoxic/excitotoxic stimulus (mimicking neuronal death induced by cerebral HI). Both stimulations induce autophagic neuronal death (dependent on canonical autophagic genes and independent on apoptotic, necroptotic or ferroptotic pathways) with all morphological and biochemical (ATP1a-dependent) features of autosis. However, we demonstrated that autosis is not dependent on the ubiquitous subunit ATP1a1 in neurons, as in dividing cell types, but on the neuronal specific ATP1a3 subunit. We also provided evidence that, in different in vitro and in vivo models where autosis is induced, ATP1a3-BECN1 interaction is increased and prevented by cardiac glycosides treatment. Interestingly, an increase in ATP1a3-BECN1 interaction is also detected in dying neurons in the autoptic brains of human newborns with severe hypoxic-ischemic encephalopathy (HIE). Altogether, these results suggest that ATP1a3-BECN1-dependent autosis could play an important role in neuronal death in HI conditions, paving the way for the development of new neuroprotective strategies in hypoxic-ischemic conditions including in severe case of human HIE.


Asunto(s)
Hipoxia-Isquemia Encefálica , Neuronas , ATPasa Intercambiadora de Sodio-Potasio , Animales , Humanos , Ratones , Ratas , Muerte Celular Autofágica/efectos de los fármacos , Autofagia , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
10.
J Cereb Blood Flow Metab ; 42(9): 1650-1665, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35240875

RESUMEN

Lactate can be used by neurons as an energy substrate to support their activity. Evidence suggests that lactate also acts on a metabotropic receptor called HCAR1, first described in the adipose tissue. Whether HCAR1 also modulates neuronal circuits remains unclear. In this study, using qRT-PCR, we show that HCAR1 is present in the human brain of epileptic patients who underwent resective surgery. In brain slices from these patients, pharmacological HCAR1 activation using a non-metabolized agonist decreased the frequency of both spontaneous neuronal Ca2+ spiking and excitatory post-synaptic currents (sEPSCs). In mouse brains, we found HCAR1 expression in different regions using a fluorescent reporter mouse line and in situ hybridization. In the dentate gyrus, HCAR1 is mainly present in mossy cells, key players in the hippocampal excitatory circuitry and known to be involved in temporal lobe epilepsy. By using whole-cell patch clamp recordings in mouse and rat slices, we found that HCAR1 activation causes a decrease in excitability, sEPSCs, and miniature EPSCs frequency of granule cells, the main output of mossy cells. Overall, we propose that lactate can be considered a neuromodulator decreasing synaptic activity in human and rodent brains, which makes HCAR1 an attractive target for the treatment of epilepsy.


Asunto(s)
Giro Dentado , Epilepsia , Neuronas , Receptores Acoplados a Proteínas G , Animales , Encéfalo , Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Ácido Láctico , Ratones , Neuronas/fisiología , Ratas , Receptores Acoplados a Proteínas G/metabolismo
11.
Autophagy ; 18(6): 1297-1317, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34520334

RESUMEN

Cerebral ischemia is a pathology involving a cascade of cellular mechanisms, leading to the deregulation of proteostasis, including macroautophagy/autophagy, and finally to neuronal death. If it is now accepted that cerebral ischemia induces autophagy, the effect of thrombolysis/energy recovery on proteostasis remains unknown. Here, we investigated the effect of thrombolysis by PLAT/tPA (plasminogen activator, tissue) on autophagy and neuronal death. In two in vitro models of hypoxia reperfusion and an in vivo model of thromboembolic stroke with thrombolysis by PLAT/tPA, we found that ischemia enhances neuronal deleterious autophagy. Interestingly, PLAT/tPA decreases autophagy to mediate neuroprotection by modulating the PI3K-AKT-MTOR pathways both in vitro and in vivo. We identified IGF1R (insulin-like growth factor I receptor; a tyrosine kinase receptor) as the effective receptor and showed in vitro, in vivo and in human stroke patients and that PLAT/tPA is able to degrade IGFBP3 (insulin-like growth factor binding protein 3) to increase IGF1 (insulin-like growth factor 1) bioavailability and thus IGF1R activation.Abbreviations: AKT/protein kinase B: thymoma viral proto-oncogene 1; EGFR: epidermal growth factor receptor; Hx: hypoxia; IGF1: insulin-like growth factor 1; IGF1R: insulin-like growth factor I receptor; IGFBP3: insulin-like growth factor binding protein 3; Ka: Kainate; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OGD: oxygen and glucose deprivation; OGDreox: oxygen and glucose deprivation + reoxygentation; PepA: pepstatin A1; PI3K: phosphoinositide 3-kinase; PLAT/tPA: plasminogen activator, tissue; PPP: picropodophyllin; SCH77: SCH772984; ULK1: unc-51 like kinase 1; Wort: wortmannin.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Autofagia , Isquemia Encefálica/tratamiento farmacológico , Glucosa/farmacología , Humanos , Hipoxia , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Oxígeno/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Accidente Cerebrovascular/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Terapia Trombolítica , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/farmacología
12.
J Neurochem ; 119(6): 1243-52, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22004371

RESUMEN

Excitotoxicity and cerebral ischemia induce strong endocytosis in neurons, and we here investigate its functional role in neuroprotection by a functional transactivator of transcription (TAT)-peptide, the c-Jun N-terminal kinase (JNK) inhibitor D-JNKI1, against NMDA-excitotoxicity in vitro and neonatal ischemic stroke in P12 Sprague-Dawley rats. In both situations, the neuroprotective efficacy of D-JNKI1 was confirmed, but excessively high doses were counterproductive. Importantly, the induced endocytosis was necessary for neuroprotection, which required that the TAT-peptide be administered at a time when induced endocytosis was occurring. Uptake by other routes failed to protect, and even promoted cell death at high doses. Blocking the induced endocytosis of D-JNKI1 with heparin or with an excess of D-TAT-peptide eliminated the neuroprotection. We conclude that excitotoxicity-induced endocytosis is a basic property of stressed neurons that can target neuroprotective TAT-peptides into the neurons that need protection. Furthermore, it is the main mediator of neuroprotection by D-JNKI1. This may explain promising reports of strong neuroprotection by TAT-peptides without apparent side effects, and warns that the timing of peptide administration is crucial.


Asunto(s)
Endocitosis/efectos de los fármacos , Infarto de la Arteria Cerebral Media/patología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Endocitosis/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Sprague-Dawley , Transfección
13.
Elife ; 102021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34713805

RESUMEN

Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (-150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (-5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo.


Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes 'megapolarized', this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.


Asunto(s)
Péptidos de Penetración Celular/genética , Canales de Potasio/genética , Animales , Línea Celular , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Células HeLa , Humanos , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Canales de Potasio/metabolismo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Pez Cebra
14.
Am J Pathol ; 175(5): 1962-74, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19815706

RESUMEN

The multiplicity of cell death mechanisms induced by neonatal hypoxia-ischemia makes neuroprotective treatment against neonatal asphyxia more difficult to achieve. Whereas the roles of apoptosis and necrosis in such conditions have been studied intensively, the implication of autophagic cell death has only recently been considered. Here, we used the most clinically relevant rodent model of perinatal asphyxia to investigate the involvement of autophagy in hypoxic-ischemic brain injury. Seven-day-old rats underwent permanent ligation of the right common carotid artery, followed by 2 hours of hypoxia. This condition not only increased autophagosomal abundance (increase in microtubule-associated protein 1 light chain 3-11 level and punctuate labeling) but also lysosomal activities (cathepsin D, acid phosphatase, and beta-N-acetylhexosaminidase) in cortical and hippocampal CA3-damaged neurons at 6 and 24 hours, demonstrating an increase in the autophagic flux. In the cortex, this enhanced autophagy may be related to apoptosis since some neurons presenting a high level of autophagy also expressed apoptotic features, including cleaved caspase-3. On the other hand, enhanced autophagy in CA3 was associated with a more purely autophagic cell death phenotype. In striking contrast to CA3 neurons, those in CA1 presented only a minimal increase in autophagy but strong apoptotic characteristics. These results suggest a role of enhanced autophagy in delayed neuronal death after severe hypoxia-ischemia that is differentially linked to apoptosis according to the cerebral region.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Encéfalo , Hipoxia-Isquemia Encefálica , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Encéfalo/anatomía & histología , Encéfalo/fisiología , Caspasa 3/metabolismo , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/fisiopatología , Recién Nacido , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Masculino , Fagosomas/metabolismo , Ratas , Ratas Sprague-Dawley
15.
Ann Neurol ; 65(3): 337-47, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19334077

RESUMEN

OBJECTIVE: Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. METHODS: In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. RESULTS: In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N-methyl-D-aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. INTERPRETATION: Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Agonistas de Aminoácidos Excitadores/toxicidad , N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Neuronas/fisiología , Alanina/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Dextranos/metabolismo , Modelos Animales de Enfermedad , Dinamina I/genética , Endocitosis/efectos de los fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Productos del Gen tat/metabolismo , Proteínas Fluorescentes Verdes/genética , Peroxidasa de Rábano Silvestre/metabolismo , Inyecciones Intraventriculares/métodos , Lisina/genética , Masculino , Mutación/genética , Ratas , Ratas Sprague-Dawley , Transfección/métodos , Proteínas de Transporte Vesicular/metabolismo
16.
Ann Neurol ; 66(3): 378-89, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19551849

RESUMEN

OBJECTIVE: To evaluate the contributions of autophagic, necrotic, and apoptotic cell death mechanisms after neonatal cerebral ischemia and hence define the most appropriate neuroprotective approach for postischemic therapy. METHODS: Rats were exposed to transient focal cerebral ischemia on postnatal day 12. Some rats were treated by postischemic administration of pan-caspase or autophagy inhibitors. The ischemic brain tissue was studied histologically, biochemically, and ultrastructurally for autophagic, apoptotic, and necrotic markers. RESULTS: Lysosomal and autophagic activities were increased in neurons in the ischemic area from 6 to 24 hours postinjury, as shown by immunohistochemistry against lysosomal-associated membrane protein 1 and cathepsin D, by acid phosphatase histochemistry, by increased expression of autophagosome-specific LC3-II and by punctate LC3 staining. Electron microscopy confirmed the presence of large autolysosomes and putative autophagosomes in neurons. The increases in lysosomal activity and autophagosome formation together demonstrate increased autophagy, which occurred mainly in the border of the lesion, suggesting its involvement in delayed cell death. We also provide evidence for necrosis near the center of the lesion and apoptotic-like cell death in its border, but in nonautophagic cells. Postischemic intracerebroventricular injections of autophagy inhibitor 3-methyladenine strongly reduced the lesion volume (by 46%) even when given >4 hours after the beginning of the ischemia, whereas pan-caspase inhibitors, carbobenzoxy-valyl-alanyl-aspartyl(OMe)-fluoromethylketone and quinoline-val-asp(OMe)-Ch2-O-phenoxy, provided no protection. INTERPRETATION: The prominence of autophagic neuronal death in the ischemic penumbra and the neuroprotective efficacy of postischemic autophagy inhibition indicate that autophagy should be a primary target in the treatment of neonatal cerebral ischemia.


Asunto(s)
Autofagia/fisiología , Isquemia Encefálica/patología , Encéfalo/patología , Neuronas/patología , Adenina/administración & dosificación , Adenina/análogos & derivados , Adenina/farmacología , Adenina/uso terapéutico , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Inhibidores de Caspasas , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Inmunohistoquímica , Inyecciones Intraventriculares , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/patología , Lisosomas/efectos de los fármacos , Lisosomas/patología , Masculino , Microscopía Electrónica , Necrosis/metabolismo , Necrosis/patología , Necrosis/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/patología , Ratas , Ratas Sprague-Dawley
17.
Front Cell Dev Biol ; 8: 27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133356

RESUMEN

Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic-ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic-ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.

18.
JCI Insight ; 5(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31941841

RESUMEN

Autosis is a distinct form of cell death that requires both autophagy genes and the Na+,K+-ATPase pump. However, the relationship between the autophagy machinery and Na+,K+-ATPase is unknown. We explored the hypothesis that Na+,K+-ATPase interacts with the autophagy protein Beclin 1 during stress and autosis-inducing conditions. Starvation increased the Beclin 1/Na+,K+-ATPase interaction in cultured cells, and this was blocked by cardiac glycosides, inhibitors of Na+,K+-ATPase. Increases in Beclin 1/Na+,K+-ATPase interaction were also observed in tissues from starved mice, livers of patients with anorexia nervosa, brains of neonatal rats subjected to cerebral hypoxia-ischemia (HI), and kidneys of mice subjected to renal ischemia/reperfusion injury (IRI). Cardiac glycosides blocked the increased Beclin 1/Na+,K+-ATPase interaction during cerebral HI injury and renal IRI. In the mouse renal IRI model, cardiac glycosides reduced numbers of autotic cells in the kidney and improved clinical outcome. Moreover, blockade of endogenous cardiac glycosides increased Beclin 1/Na+,K+-ATPase interaction and autotic cell death in mouse hearts during exercise. Thus, Beclin 1/Na+,K+-ATPase interaction is increased in stress conditions, and cardiac glycosides decrease this interaction and autosis in both pathophysiological and physiological settings. This crosstalk between cellular machinery that generates and consumes energy during stress may represent a fundamental homeostatic mechanism.


Asunto(s)
Autofagia/fisiología , Beclina-1/metabolismo , Isquemia/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Inanición/metabolismo , Animales , Muerte Celular/fisiología , Células Cultivadas , Glicósidos , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión
19.
J Neurochem ; 108(3): 552-62, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19046406

RESUMEN

D-JNKI1, a cell-permeable peptide inhibitor of the c-Jun N-terminal kinase (JNK) pathway, has been shown to be a powerful neuroprotective agent after focal cerebral ischemia in adult mice and young rats. We have investigated the potential neuroprotective effect of D-JNKI1 and the involvement of the JNK pathway in a neonatal rat model of cerebral hypoxia-ischemia (HI). Seven-day-old rats underwent a permanent ligation of the right common carotid artery followed by 2 h of hypoxia (8% oxygen). Treatment with D-JNKI1 (0.3 mg/kg intraperitoneally) significantly reduced early calpain activation, late caspase 3 activation and, in the thalamus, autophagosome formation, indicating an involvement of JNK in different types of cell death: necrotic, apoptotic, and autophagic. However, the size of the lesion was unchanged. Further analysis showed that neonatal HI induced an immediate decrease in JNK phosphorylation (reflecting mainly JNK1 phosphorylation) followed by a slow progressive increase (including JNK3 phosphorylation 54 kDa), whereas c-jun and c-fos expression were both strongly activated immediately after HI. In conclusion, unlike in adult ischemic models, JNK is only moderately activated after severe cerebral HI in neonatal rats and the observed positive effects of D-JNKI1 are insufficient to give neuroprotection. Thus, for perinatal asphyxia, D-JNKI1 can only be considered in association with other therapies.


Asunto(s)
Animales Recién Nacidos/fisiología , Hipoxia-Isquemia Encefálica/fisiopatología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Transducción de Señal/fisiología , Animales , Asfixia/fisiopatología , Autofagia , Western Blotting , Encéfalo/patología , Calpaína/metabolismo , Caspasa 3/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Expresión Génica , Genes fos/fisiología , Hipoxia-Isquemia Encefálica/patología , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Masculino , Péptidos/farmacología , Fosforilación , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Med Sci (Paris) ; 25(4): 383-90, 2009 Apr.
Artículo en Francés | MEDLINE | ID: mdl-19409191

RESUMEN

Autophagy is a cellular mechanism for degrading proteins and organelles. It was first described as a physiological process essential for maintaining homeostasis and cell survival, but understanding its role in conditions of stress has been complicated by the recognition of a new type of cell death ("type 2") characterized by deleterious autophagic activity. This paradox is important in the central nervous system where the activation of autophagy seems to be protective in certain neurodegenerative diseases but deleterious in cerebral ischemia. The development of new therapeutic strategies based on the manipulation of autophagy will need to take into account these opposing roles of autophagy.


Asunto(s)
Autofagia/fisiología , Isquemia Encefálica/fisiopatología , Fenómenos Fisiológicos del Sistema Nervioso , Enfermedades Neurodegenerativas/fisiopatología , Animales , Autofagia/genética , Isquemia Encefálica/patología , Embrión de Pollo , Desarrollo Embrionario , Humanos , Larva/crecimiento & desarrollo , Lisosomas/fisiología , Mamíferos/genética , Mamíferos/fisiología , Modelos Biológicos , Chaperonas Moleculares/fisiología , Complejos Multiproteicos/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Quinasas/fisiología , Ranidae/crecimiento & desarrollo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/fisiología , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA