Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31434737

RESUMEN

HIV Vaccine Trials Network (HVTN) 505 was a phase 2b efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) HIV vaccine regimen. Although the trial was stopped early for lack of overall efficacy, later correlates of risk and sieve analyses generated the hypothesis that the DNA/rAd5 vaccine regimen protected some vaccinees from HIV infection yet enhanced HIV infection risk for others. Here, we assessed whether and how host Fc gamma receptor (FcγR) genetic variations influenced the DNA/rAd5 vaccine regimen's effect on HIV infection risk. We found that vaccine receipt significantly increased HIV acquisition compared with placebo receipt among participants carrying the FCGR2C-TATA haplotype (comprising minor alleles of four FCGR2C single-nucleotide polymorphism [SNP] sites) (hazard ratio [HR] = 9.79, P = 0.035) but not among participants without the haplotype (HR = 0.86, P = 0.67); the interaction of vaccine and haplotype effect was significant (P = 0.034). Similarly, vaccine receipt increased HIV acquisition compared with placebo receipt among participants carrying the FCGR3B-AGA haplotype (comprising minor alleles of the 3 FCGR3B SNPs) (HR = 2.78, P = 0.058) but not among participants without the haplotype (HR = 0.73, P = 0.44); again, the interaction of vaccine and haplotype was significant (P = 0.047). The FCGR3B-AGA haplotype also influenced whether a combined Env-specific CD8+ T-cell polyfunctionality score and IgG response correlated significantly with HIV risk; an FCGR2A SNP and two FCGR2B SNPs influenced whether anti-gp140 antibody-dependent cellular phagocytosis correlated significantly with HIV risk. These results provide further evidence that Fc gamma receptor genetic variations may modulate HIV vaccine effects and immune function after HIV vaccination.IMPORTANCE By analyzing data from the HVTN 505 efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) vaccine regimen, we found that host genetics, specifically Fc gamma receptor genetic variations, influenced whether receiving the DNA/rAd5 regimen was beneficial, neutral, or detrimental to an individual with respect to HIV-1 acquisition risk. Moreover, Fc gamma receptor genetic variations influenced immune responses to the DNA/rAd5 vaccine regimen. Thus, Fc gamma receptor genetic variations should be considered in the analysis of future HIV vaccine trials and the development of HIV vaccines.


Asunto(s)
Linfocitos B/virología , Infecciones por VIH/virología , VIH-1/genética , Polimorfismo de Nucleótido Simple , Receptores de IgG/genética , Vacunas de ADN/administración & dosificación , Anticuerpos Monoclonales/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Estudios de Casos y Controles , Ensayos Clínicos Fase II como Asunto , Vectores Genéticos/administración & dosificación , Infecciones por VIH/epidemiología , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Seropositividad para VIH , VIH-1/inmunología , Humanos , Incidencia , Fagocitosis , Estados Unidos/epidemiología , Vacunación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
2.
Diabetes Metab Res Rev ; 33(8)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28755385

RESUMEN

AIM: It is of interest to predict possible lifetime risk of type 1 diabetes (T1D) in young children for recruiting high-risk subjects into longitudinal studies of effective prevention strategies. METHODS: Utilizing a case-control study in Sweden, we applied a recently developed next generation targeted sequencing technology to genotype class II genes and applied an object-oriented regression to build and validate a prediction model for T1D. RESULTS: In the training set, estimated risk scores were significantly different between patients and controls (P = 8.12 × 10-92 ), and the area under the curve (AUC) from the receiver operating characteristic (ROC) analysis was 0.917. Using the validation data set, we validated the result with AUC of 0.886. Combining both training and validation data resulted in a predictive model with AUC of 0.903. Further, we performed a "biological validation" by correlating risk scores with 6 islet autoantibodies, and found that the risk score was significantly correlated with IA-2A (Z-score = 3.628, P < 0.001). When applying this prediction model to the Swedish population, where the lifetime T1D risk ranges from 0.5% to 2%, we anticipate identifying approximately 20 000 high-risk subjects after testing all newborns, and this calculation would identify approximately 80% of all patients expected to develop T1D in their lifetime. CONCLUSION: Through both empirical and biological validation, we have established a prediction model for estimating lifetime T1D risk, using class II HLA. This prediction model should prove useful for future investigations to identify high-risk subjects for prevention research in high-risk populations.


Asunto(s)
Autoanticuerpos , Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad , Antígenos HLA-DQ/genética , Alelos , Estudios de Casos y Controles , Niño , Diabetes Mellitus Tipo 1/inmunología , Femenino , Genotipo , Humanos , Masculino , Modelos Teóricos , Medición de Riesgo , Factores de Riesgo , Suecia
3.
J Immunol ; 191(4): 1567-77, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23851683

RESUMEN

Peptides that are presented by MHC class I (MHC-I) are processed from two potential sources, as follows: newly synthesized endogenous proteins for direct presentation on the surface of most nucleated cells and exogenous proteins for cross-presentation typically by professional APCs. In this study, we present data that implicate the nonclassical HLA-F and open conformers of MHC-I expressed on activated cells in a pathway for the presentation of exogenous proteins by MHC-I. This pathway is distinguished from the conventional endogenous pathway by its independence from TAP and tapasin and its sensitivity to inhibitors of lysosomal enzymes, and further distinguished by its dependence on MHC-I allotype-specific epitope recognition for Ag uptake. Thus, our data from in vitro experiments collectively support a previously unrecognized model of Ag cross-presentation mediated by HLA-F and MHC-I open conformers on activated lymphocytes and monocytes, which may significantly contribute to the regulation of immune system functions and the immune defense.


Asunto(s)
Reactividad Cruzada , Antígenos de Histocompatibilidad Clase I/inmunología , Modelos Inmunológicos , Secuencia de Aminoácidos , Antígenos de Superficie/inmunología , Antígenos Virales/química , Antígenos Virales/inmunología , Linfocitos B/inmunología , Línea Celular Tumoral , Endosomas/efectos de los fármacos , Endosomas/enzimología , Endosomas/inmunología , Inhibidores Enzimáticos/farmacología , Epítopos/inmunología , Epítopos de Linfocito T , Antígenos de Histocompatibilidad Clase I/química , Humanos , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Linfocitos/inmunología , Linfoma de Células B Grandes Difuso/patología , Datos de Secuencia Molecular , Monocitos/inmunología , Fragmentos de Péptidos/inmunología , Conformación Proteica , Transporte de Proteínas , Linfocitos T Citotóxicos/inmunología
4.
Diabetes Care ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949847

RESUMEN

OBJECTIVE: To explore if oral insulin could delay onset of stage 3 type 1 diabetes (T1D) among patients with stage 1/2 who carry HLA DR4-DQ8 and/or have elevated levels of IA-2 autoantibodies (IA-2As). RESEARCH AND METHODS: Next-generation targeted sequencing technology was used to genotype eight HLA class II genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, and DPB1) in 546 participants in the TrialNet oral insulin preventative trial (TN07). Baseline levels of autoantibodies against insulin (IAA), GAD65 (GADA), and IA-2A were determined prior to treatment assignment. Available clinical and demographic covariables from TN07 were used in this post hoc analysis with the Cox regression model to quantify the preventive efficacy of oral insulin. RESULTS: Oral insulin reduced the frequency of T1D onset among participants with elevated IA-2A levels (HR 0.62; P = 0.012) but had no preventive effect among those with low IA-2A levels (HR 1.03; P = 0.91). High IA-2A levels were positively associated with the HLA DR4-DQ8 haplotype (OR 1.63; P = 6.37 × 10-6) and negatively associated with the HLA DR7-containing DRB1*07:01-DRB4*01:01-DQA1*02:01-DQB1*02:02 extended haplotype (OR 0.49; P = 0.037). Among DR4-DQ8 carriers, oral insulin delayed the progression toward stage 3 T1D onset (HR 0.59; P = 0.027), especially if participants also had high IA-2A level (HR 0.50; P = 0.028). CONCLUSIONS: These results suggest the presence of a T1D endotype characterized by HLA DR4-DQ8 and/or elevated IA-2A levels; for those patients with stage 1/2 disease with such an endotype, oral insulin delays the clinical T1D onset.

5.
Diabetes Care ; 47(5): 826-834, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38498185

RESUMEN

OBJECTIVE: To explore associations of HLA class II genes (HLAII) with the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype eight HLAII genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, DPB1) in 1,216 participants from the Diabetes Prevention Trial-1 and Randomized Diabetes Prevention Trial with Oral Insulin sponsored by TrialNet. By the linkage disequilibrium, DQA1 and DQB1 are haplotyped to form DQ haplotypes; DP and DR haplotypes are similarly constructed. Together with available clinical covariables, we applied the Cox regression model to assess HLAII immunogenic associations with the disease progression. RESULTS: First, the current investigation updated the previously reported genetic associations of DQA1*03:01-DQB1*03:02 (hazard ratio [HR] = 1.25, P = 3.50*10-3) and DQA1*03:03-DQB1*03:01 (HR = 0.56, P = 1.16*10-3), and also uncovered a risk association with DQA1*05:01-DQB1*02:01 (HR = 1.19, P = 0.041). Second, after adjusting for DQ, DPA1*02:01-DPB1*11:01 and DPA1*01:03-DPB1*03:01 were found to have opposite associations with progression (HR = 1.98 and 0.70, P = 0.021 and 6.16*10-3, respectively). Third, DRB1*03:01-DRB3*01:01 and DRB1*03:01-DRB3*02:02, sharing the DRB1*03:01, had opposite associations (HR = 0.73 and 1.44, P = 0.04 and 0.019, respectively), indicating a role of DRB3. Meanwhile, DRB1*12:01-DRB3*02:02 and DRB1*01:03 alone were found to associate with progression (HR = 2.6 and 2.32, P = 0.018 and 0.039, respectively). Fourth, through enumerating all heterodimers, it was found that both DQ and DP could exhibit associations with disease progression. CONCLUSIONS: These results suggest that HLAII polymorphisms influence progression from islet autoimmunity to T1D among at-risk subjects with islet autoantibodies.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevención & control , Seroconversión , Genotipo , Haplotipos , Progresión de la Enfermedad , Cadenas HLA-DRB1/genética , Cadenas beta de HLA-DQ/genética , Alelos , Frecuencia de los Genes
6.
BMC Genomics ; 14: 89, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23394822

RESUMEN

BACKGROUND: The human KIR genes are arranged in at least six major gene-content haplotypes, all of which are combinations of four centromeric and two telomeric motifs. Several less frequent or minor haplotypes also exist, including insertions, deletions, and hybridization of KIR genes derived from the major haplotypes. These haplotype structures and their concomitant linkage disequilibrium among KIR genes suggest that more meaningful correlative data from studies of KIR genetics and complex disease may be achieved by measuring haplotypes of the KIR region in total. RESULTS: Towards that end, we developed a KIR haplotyping method that reports unambiguous combinations of KIR gene-content haplotypes, including both phase and copy number for each KIR. A total of 37 different gene content haplotypes were detected from 4,512 individuals and new sequence data was derived from haplotypes where the detailed structure was not previously available. CONCLUSIONS: These new structures suggest a number of specific recombinant events during the course of KIR evolution, and add to an expanding diversity of potential new KIR haplotypes derived from gene duplication, deletion, and hybridization.


Asunto(s)
Haplotipos , Células Asesinas Naturales/metabolismo , Desequilibrio de Ligamiento , Receptores KIR/genética , Alelos , Centrómero/genética , Duplicación de Gen , Frecuencia de los Genes , Antígenos HLA/genética , Humanos , Células Asesinas Naturales/citología , Polimorfismo de Nucleótido Simple , Receptores KIR/química , Telómero/genética
7.
HLA ; 102(2): 179-191, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36960942

RESUMEN

The gene complex located on chromosome 19q13.4 encodes the Killer-cell Immunoglobulin-like Receptors (KIRs), which exhibit remarkable polymorphism in both gene content and sequences. Further, the repertoire of KIR genes varies within and between populations, creating a diverse pool of KIR genotypes. This study was carried out to characterize KIR genotypes and haplotypes among 379 Arab Kuwaiti individuals including 60 subjects from 20 trio families, 49 hematopoietic cell transplantation (HCT) recipients and 270 healthy Kuwaiti volunteer HCT donors. KIR Genotyping was performed by a combination of reverse sequence specific oligonucleotide probes (rSSO) and/or Real Time PCR. The frequencies of KIR genes in 270 healthy Kuwaiti volunteer donors were compared to previously reported frequencies in other populations. In addition, we compared the differences in KIR repertoire of patients and healthy donors to investigate the reproducibility of previously reported significant differences between patients with hematological malignancies and healthy donors. The observed frequencies in our cohort volunteer HCT donors was comparable to those reported in neighboring Arab populations. The activating genes KIR2DS1, KIR2DS5 and KIR3DS1 and the inhibitory gene KIR2DL5 were significantly more frequent in patients compared to healthy donors, however, none of the previously reported differences were reproducible in our Kuwaiti cohort. This report is the first description of KIR gene carrier frequency and haplotype characterization in a fairly large cohort of the Kuwaiti population, which may have implications in KIR based HCT donor selection strategies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Receptores KIR , Humanos , Alelos , Frecuencia de los Genes , Genotipo , Haplotipos , Kuwait , Receptores KIR/genética , Reproducibilidad de los Resultados , Receptores de Trasplantes
8.
Cell Host Microbe ; 31(1): 97-111.e12, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36347257

RESUMEN

Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing. However, 11 antibodies targeting the stem helix neutralized betacoronaviruses from different lineages. Eight antibodies in this group, including the six broadest and most potent neutralizers, were encoded by IGHV1-46 and IGKV3-20. Crystal structures of three antibodies of this class at 1.5-1.75-Å resolution revealed a conserved mode of binding. COV89-22 neutralized SARS-CoV-2 variants of concern including Omicron BA.4/5 and limited disease in Syrian hamsters. Collectively, these findings identify a class of IGHV1-46/IGKV3-20 antibodies that broadly neutralize betacoronaviruses by targeting the stem helix but indicate these antibodies constitute a small fraction of the broadly reactive antibody response to betacoronaviruses after SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Anticuerpos Monoclonales , Brotes de Enfermedades , Mesocricetus , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
9.
Res Sq ; 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35233566

RESUMEN

Extensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an investigative framework, we have applied an unsupervised machine learning approach to 4296 Omicron viral genomes collected and deposited to GISAID as of December 14, 2021, and have identified a core haplotype of 28 polymutants (A67V, T95I, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, K796Y, N856K, Q954H, N69K, L981F) in the spike protein and a separate core haplotype of 17 polymutants in non-spike genes: (K38, A1892) in nsp3, T492 in nsp4, (P132, V247, T280, S284) in 3C-like proteinase, I189 in nsp6, P323 in RNA-dependent RNA polymerase, I42 in Exonuclease, T9 in envelope protein, (D3, Q19, A63) in membrane glycoprotein, and (P13, R203, G204) in nucleocapsid phosphoprotein. Using these core haplotypes as reference, we have identified four newly emerging polymutants (R346, A701, I1081, N1192) in the spike protein (p-value=9.37*10 -4 , 1.0*10 -15 , 4.76*10 -7 and 1.56*10 -4 , respectively), and five additional polymutants in non-spike genes (D343G in nucleocapsid phosphoprotein, V1069I in nsp3, V94A in nsp4, F694Y in the RNA-dependent RNA polymerase and L106L/F of ORF3a) that exhibit significant increasing trajectories (all p-values < 1.0*10 -15 ). In the absence of relevant clinical data for these newly emerging mutations, it is important to monitor them closely. Two emerging mutations may be of particular concern: the N1192S mutation in spike protein locates in an extremely highly conserved region of all human coronaviruses that is integral to the viral fusion process, and the F694Y mutation in the RNA polymerase may induce conformational changes that could impact Remdesivir binding.

10.
HLA ; 100(5): 479-490, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36227705

RESUMEN

Dogs have served as one of the most reliable preclinical models for a variety of diseases and treatments, including stem/progenitor cell transplantation. At the genetic epicenter of dog transplantation models, polymorphic major histocompatibility complex (MHC) genes are most impactful on transplantation success. Among the canine class I and class II genes, DLA-88 has been best studied in transplantation matching and outcomes, with 129 DLA-88 alleles identified. In this study we developed and tested a next generation (NGS) sequencing protocol for rapid identification of DLA-88 genotypes in dogs and compared the workflow and data generated with an established DLA-88 Sanger sequencing protocol that has been in common prior use for clinical studies. By testing the NGS protocol on a random population of 382 dogs, it was possible to demonstrate superior efficacy based on laboratory execution and overall cost. In addition, NGS proved far more effective at discovering new alleles and detecting multiple alleles associated with gene duplication. A total of 51 new DLA-88 alleles are reported here. This rate of new allele discovery indicates that a large pool of yet un-discovered DLA-88 alleles exists in the domestic dog population. In addition, more than 46% of dogs carried three or more copies of DLA-88, further emphasizing the need for more sensitive and cost-effective DLA typing methodology for the dog clinical model.


Asunto(s)
Duplicación de Gen , Antígenos de Histocompatibilidad Clase I , Alelos , Animales , Perros , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Antígenos de Histocompatibilidad Clase I/genética
11.
Sci Rep ; 12(1): 19089, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352021

RESUMEN

Extensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an investigative framework, we have applied an unsupervised machine learning approach to 4296 Omicron viral genomes collected and deposited to GISAID as of December 14, 2021, and have identified a core haplotype of 28 polymutants (A67V, T95I, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, K796Y, N856K, Q954H, N69K, L981F) in the spike protein and a separate core haplotype of 17 polymutants in non-spike genes: (K38, A1892) in nsp3, T492 in nsp4, (P132, V247, T280, S284) in 3C-like proteinase, I189 in nsp6, P323 in RNA-dependent RNA polymerase, I42 in Exonuclease, T9 in envelope protein, (D3, Q19, A63) in membrane glycoprotein, and (P13, R203, G204) in nucleocapsid phosphoprotein. Using these core haplotypes as reference, we have identified four newly emerging polymutants (R346, A701, I1081, N1192) in the spike protein (p value = 9.37*10-4, 1.0*10-15, 4.76*10-7 and 1.56*10-4, respectively), and five additional polymutants in non-spike genes (D343G in nucleocapsid phosphoprotein, V1069I in nsp3, V94A in nsp4, F694Y in the RNA-dependent RNA polymerase and L106L/F of ORF3a) that exhibit significant increasing trajectories (all p values < 1.0*10-15). In the absence of relevant clinical data for these newly emerging mutations, it is important to monitor them closely. Two emerging mutations may be of particular concern: the N1192S mutation in spike protein locates in an extremely highly conserved region of all human coronaviruses that is integral to the viral fusion process, and the F694Y mutation in the RNA polymerase may induce conformational changes that could impact remdesivir binding.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Aprendizaje Automático no Supervisado , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , ARN Polimerasa Dependiente del ARN , Mutación , Fosfoproteínas/genética
12.
Diabetes Care ; 45(7): 1610-1620, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35621697

RESUMEN

OBJECTIVE: The purpose was to test the hypothesis that the HLA-DQαß heterodimer structure is related to the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype HLA-DQA1-B1 class II genes in 670 subjects in the Diabetes Prevention Trial-Type 1 (DPT-1). Coding sequences were translated into DQ α- and ß-chain amino acid residues and used in hierarchically organized haplotype (HOH) association analysis to identify motifs associated with diabetes onset. RESULTS: The opposite diabetes risks were confirmed for HLA DQA1*03:01-B1*03:02 (hazard ratio [HR] 1.36; P = 2.01 ∗ 10-3) and DQA1*03:03-B1*03:01 (HR 0.62; P = 0.037). The HOH analysis uncovered residue -18ß in the signal peptide and ß57 in the ß-chain to form six motifs. DQ*VA was associated with faster (HR 1.49; P = 6.36 ∗ 10-4) and DQ*AD with slower (HR 0.64; P = 0.020) progression to diabetes onset. VA/VA, representing DQA1*03:01-B1*03:02 (DQ8/8), had a greater HR of 1.98 (P = 2.80 ∗ 10-3). The DQ*VA motif was associated with both islet cell antibodies (P = 0.023) and insulin autoantibodies (IAAs) (P = 3.34 ∗ 10-3), while the DQ*AD motif was associated with a decreased IAA frequency (P = 0.015). Subjects with DQ*VA and DQ*AD experienced, respectively, increasing and decreasing trends of HbA1c levels throughout the follow-up. CONCLUSIONS: HLA-DQ structural motifs appear to modulate progression from islet autoimmunity to diabetes among at-risk relatives with islet autoantibodies. Residue -18ß within the signal peptide may be related to levels of protein synthesis and ß57 to stability of the peptide-DQab trimolecular complex.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Autoanticuerpos , Autoinmunidad/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevención & control , Predisposición Genética a la Enfermedad , Antígenos HLA-DQ/genética , Cadenas alfa de HLA-DQ/genética , Cadenas beta de HLA-DQ/genética , Haplotipos , Humanos , Señales de Clasificación de Proteína/genética
13.
Commun Biol ; 5(1): 1387, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536032

RESUMEN

Rhesus cytomegalovirus (RhCMV)-based vaccination against Simian Immunodeficiency virus (SIV) elicits MHC-E-restricted CD8+ T cells that stringently control SIV infection in ~55% of vaccinated rhesus macaques (RM). However, it is unclear how accurately the RM model reflects HLA-E immunobiology in humans. Using long-read sequencing, we identified 16 Mamu-E isoforms and all Mamu-E splicing junctions were detected among HLA-E isoforms in humans. We also obtained the complete Mamu-E genomic sequences covering the full coding regions of 59 RM from a RhCMV/SIV vaccine study. The Mamu-E gene was duplicated in 32 (54%) of 59 RM. Among four groups of Mamu-E alleles: three ~5% divergent full-length allele groups (G1, G2, G2_LTR) and a fourth monomorphic group (G3) with a deletion encompassing the canonical Mamu-E exon 6, the presence of G2_LTR alleles was significantly (p = 0.02) associated with the lack of RhCMV/SIV vaccine protection. These genomic resources will facilitate additional MHC-E targeted translational research.


Asunto(s)
Empalme Alternativo , Vacunas contra Citomegalovirus , Antígenos de Histocompatibilidad Clase I , Animales , Humanos , Citomegalovirus , Variación Genética , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA-E
14.
Sci Rep ; 12(1): 1206, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075180

RESUMEN

SARS-CoV-2 is spreading worldwide with continuously evolving variants, some of which occur in the Spike protein and appear to increase viral transmissibility. However, variants that cause severe COVID-19 or lead to other breakthroughs have not been well characterized. To discover such viral variants, we assembled a cohort of 683 COVID-19 patients; 388 inpatients ("cases") and 295 outpatients ("controls") from April to August 2020 using electronically captured COVID test request forms and sequenced their viral genomes. To improve the analytical power, we accessed 7137 viral sequences in Washington State to filter out viral single nucleotide variants (SNVs) that did not have significant expansions over the collection period. Applying this filter led to the identification of 53 SNVs that were statistically significant, of which 13 SNVs each had 3 or more variant copies in the discovery cohort. Correlating these selected SNVs with case/control status, eight SNVs were found to significantly associate with inpatient status (q-values < 0.01). Using temporal synchrony, we identified a four SNV-haplotype (t19839-g28881-g28882-g28883) that was significantly associated with case/control status (Fisher's exact p = 2.84 × 10-11). This haplotype appeared in April 2020, peaked in June, and persisted into January 2021. The association was replicated (OR = 5.46, p-value = 4.71 × 10-12) in an independent cohort of 964 COVID-19 patients (June 1, 2020 to March 31, 2021). The haplotype included a synonymous change N73N in endoRNase, and three non-synonymous changes coding residues R203K, R203S and G204R in the nucleocapsid protein. This discovery points to the potential functional role of the nucleocapsid protein in triggering "cytokine storms" and severe COVID-19 that led to hospitalization. The study further emphasizes a need for tracking and analyzing viral sequences in correlations with clinical status.


Asunto(s)
COVID-19 , Haplotipos , Hospitalización , Mutación , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , COVID-19/terapia , Femenino , Humanos , Masculino , Washingtón/epidemiología
15.
bioRxiv ; 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35441178

RESUMEN

The potential for future coronavirus outbreaks highlights the need to develop strategies and tools to broadly target this group of pathogens. Here, using an epitope-agnostic approach, we identified six monoclonal antibodies that bound to spike proteins from all seven human-infecting coronaviruses. Epitope mapping revealed that all six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. Two antibodies, COV44-62 and COV44-79, broadly neutralize a range of alpha and beta coronaviruses, including SARS-CoV-2 Omicron subvariants BA.1 and BA.2, albeit with lower potency than RBD-specific antibodies. In crystal structures of Fabs COV44-62 and COV44-79 with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine at the S2' cleavage site. Importantly, COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings identify the fusion peptide as the target of the broadest neutralizing antibodies in an epitope-agnostic screen, highlighting this site as a candidate for next-generation coronavirus vaccine development. One-Sentence Summary: Rare monoclonal antibodies from COVID-19 convalescent individuals broadly neutralize coronaviruses by targeting the fusion peptide.

16.
Science ; 377(6607): 728-735, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35857439

RESUMEN

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19 , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología , Epítopos/química , Epítopos/inmunología , Humanos , Péptidos/inmunología , Conformación Proteica en Hélice alfa , Dominios Proteicos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
18.
EBioMedicine ; 69: 103431, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34153873

RESUMEN

BACKGROUND: HLA-DR4, a common antigen of HLA-DRB1, has multiple subtypes that are strongly associated with risk of type 1 diabetes (T1D); however, some are risk neutral or resistant. The pathobiological mechanism of HLA-DR4 subtypes remains to be elucidated. METHODS: We used a population-based case-control study of T1D (962 patients and 636 controls) to decipher genetic associations of HLA-DR4 subtypes and specific residues with susceptibility to T1D. Using a birth cohort of 7865 children with periodically measured islet autoantibodies (GADA, IAA or IA-2A), we proposed to validate discovered genetic associations with a totally different study design and time-to-seroconversions prior to clinical onset of T1D. A novel analytic strategy hierarchically organized the HLA-DRB1 alleles by sequence similarity and identified critical amino acid residues by minimizing local genomic architecture and higher-order interactions. FINDINGS: Three amino acid residues of HLA-DRB1 (ß71, ß74, ß86) were found to be predictive of T1D risk in the population-based study. The "KAG" motif, corresponding to HLA-DRB1×04:01, was most strongly associated with T1D risk ([O]dds [R]atio=3.64, p = 3.19 × 10-64). Three less frequent motifs ("EAV", OR = 2.55, p = 0.025; "RAG", OR = 1.93, p = 0.043; and "RAV", OR = 1.56, p = 0.003) were associated with T1D risk, while two motifs ("REG" and "REV") were equally protective (OR = 0.11, p = 4.23 × 10-4). In an independent birth cohort of HLA-DR3 and HLA-DR4 subjects, those having the "KAG" motif had increased risk for time-to-seroconversion (Hazard Ratio = 1.74, p = 6.51 × 10-14) after adjusting potential confounders. INTERPRETATIONS: DNA sequence variation in HLA-DRB1 at positions ß71, ß74, and ß86 are non-conservative (ß74 A→E, ß71 E vs K vs R and ß86 G vs V). They result in substantial differences in peptide antigen anchor pocket preferences at p1, p4 and potentially neighboring regions such as pocket p7. Differential peptide antigen binding is likely to be affected. These sequence substitutions may account for most of the HLA-DR4 contribution to T1D risk as illustrated in two HLA-peptide model complexes of the T1D autoantigens preproinsulin and GAD65. FUNDING: National Institute of Diabetes and Digestive and Kidney Diseases and the Swedish Child Diabetes Foundation and the Swedish Research Council.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Cadenas HLA-DRB1/genética , Seroconversión , Secuencias de Aminoácidos , Niño , Preescolar , Diabetes Mellitus Tipo 1/inmunología , Femenino , Cadenas HLA-DRB1/química , Cadenas HLA-DRB1/inmunología , Humanos , Lactante , Masculino
19.
Sci Rep ; 11(1): 8821, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893332

RESUMEN

HLA-DQ molecules account over 50% genetic risk of type 1 diabetes (T1D), but little is known about associated residues. Through next generation targeted sequencing technology and deep learning of DQ residue sequences, the aim was to uncover critical residues and their motifs associated with T1D. Our analysis uncovered (αa1, α44, α157, α196) and (ß9, ß30, ß57, ß70, ß135) on the HLA-DQ molecule. Their motifs captured all known susceptibility and resistant T1D associations. Three motifs, "DCAA-YSARD" (OR = 2.10, p = 1.96*10-20), "DQAA-YYARD" (OR = 3.34, 2.69*10-72) and "DQDA-YYARD" (OR = 3.71, 1.53*10-6) corresponding to DQ2.5 and DQ8.1 (the latter two motifs) associated with susceptibility. Ten motifs were significantly associated with resistance to T1D. Collectively, homozygous DQ risk motifs accounted for 43% of DQ-T1D risk, while homozygous DQ resistant motifs accounted for 25% protection to DQ-T1D risk. Of the identified nine residues five were within or near anchoring pockets of the antigenic peptide (α44, ß9, ß30, ß57 and ß70), one was the N-terminal of the alpha chain (αa1), one in the CD4-binding region (ß135), one in the putative cognate TCR-induced αß homodimerization process (α157), and one in the intra-membrane domain of the alpha chain (α196). Finding these critical residues should allow investigations of fundamental properties of host immunity that underlie tolerance to self and organ-specific autoimmunity.


Asunto(s)
Aminoácidos/genética , Diabetes Mellitus Tipo 1/inmunología , Susceptibilidad a Enfermedades/inmunología , Antígenos HLA-DQ/genética , Aminoácidos/química , Estudios de Casos y Controles , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Frecuencia de los Genes , Antígenos HLA-DQ/química , Haplotipos , Humanos , Factores de Riesgo , Suecia
20.
Front Immunol ; 11: 585731, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312175

RESUMEN

Human chromosome 19q13.4 contains genes encoding killer-cell immunoglobulin-like receptors (KIR). Reported haplotype lengths range from 67 to 269 kb and contain 4 to 18 genes. The region has certain properties such as single nucleotide variation, structural variation, homology, and repetitive elements that make it hard to align accurately beyond single gene alleles. To the best of our knowledge, a multiple sequence alignment of KIR haplotypes has never been published or presented. Such an alignment would be useful to precisely define KIR haplotypes and loci, provide context for assigning alleles (especially fusion alleles) to genes, infer evolutionary history, impute alleles, interpret and predict co-expression, and generate markers. In order to extend the framework of KIR haplotype sequences in the human genome reference, 27 new sequences were generated including 24 haplotypes from 12 individuals of African American ancestry that were selected for genotypic diversity and novelty to the reference, to bring the total to 68 full length genomic KIR haplotype sequences. We leveraged these data and tools from our long-read KIR haplotype assembly algorithm to define and align KIR haplotypes at <5 kb resolution on average. We then used a standard alignment algorithm to refine that alignment down to single base resolution. This processing demonstrated that the high-level alignment recapitulates human-curated annotation of the human haplotypes as well as a chimpanzee haplotype. Further, assignments and alignments of gene alleles were consistent with their human curation in haplotype and allele databases. These results define KIR haplotypes as 14 loci containing 9 genes. The multiple sequence alignments have been applied in two software packages as probes to capture and annotate KIR haplotypes and as markers to genotype KIR from WGS.


Asunto(s)
Algoritmos , Receptores KIR/genética , Alineación de Secuencia/métodos , Animales , Haplotipos , Humanos , Pan troglodytes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA