Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Bioconjug Chem ; 26(11): 2170-5, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26065635

RESUMEN

The therapeutic cargo molecules conjugated to a specific site on a monoclonal antibody (mAb), called antibody-drug conjugates (ADCs), are becoming powerful tools in cancer treatment. Generally, the cargo molecules conjugate at the cysteine or lysine residue of the mAb, which generally results in a highly heterogeneous ADC. Therapeutic cargo molecules need to be conjugated in a site-specific manner to the mAb so that the bioefficacy of these molecules is not compromised. The mAb (IgG1) are N-glycosylated at the conserved residue Asn(297), which is present in each heavy chain of the IgG1, near the CH2 domain of the Fc fragment. The mutant or wild-type glycosyltransferases transfer sugars with a chemical handle to the glycan molecule of IgG1, making the site-specific linking of cargo molecules possible via the chemical handle, and thus making the process an invaluable technique for the production of homogeneous ADCs.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Glicosiltransferasas/metabolismo , Inmunoconjugados/metabolismo , Inmunoglobulina G/metabolismo , Animales , Anticuerpos Monoclonales/química , Secuencia de Carbohidratos , Glicosilación , Glicosiltransferasas/genética , Humanos , Inmunoconjugados/química , Inmunoglobulina G/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo
2.
J Biol Chem ; 288(44): 31963-70, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24052259

RESUMEN

The ß-1,4-galactosyltransferase 7 (ß4GalT7) enzyme is involved in proteoglycan synthesis. In the presence of a manganese ion, it transfers galactose from UDP-galactose to xylose on a proteoglycan acceptor substrate. We present here the crystal structures of human ß4GalT7 in open and closed conformations. A comparison of these crystal structures shows that, upon manganese and UDP or UDP-Gal binding, the enzyme undergoes conformational changes involving a small and a long loop. We also present the crystal structures of Drosophila wild-type ß4GalT7 and D211N ß4GalT7 mutant enzymes in the closed conformation in the presence of the acceptor substrate xylobiose and the donor substrate UDP-Gal, respectively. To understand the catalytic mechanism, we have crystallized the ternary complex of D211N ß4GalT7 mutant enzyme in the presence of manganese with the donor and the acceptor substrates together in the same crystal structure. The galactose moiety of the bound UDP-Gal molecule forms seven hydrogen bonds with the protein molecule. The nonreducing end of the xylose moiety of xylobiose binds to the hydrophobic acceptor sugar binding pocket created by the conformational changes, whereas its extended xylose moiety forms hydrophobic interactions with a Tyr residue. In the ternary complex crystal structure, the nucleophile O4 oxygen atom of the xylose molecule is found in close proximity to the C1 and O5 atoms of the galactose moiety. This is the first time that a Michaelis complex of a glycosyltransferase has been described, and it clearly suggests an SN2 type catalytic mechanism for the ß4GalT7 enzyme.


Asunto(s)
Galactosiltransferasas/química , Uridina Difosfato Galactosa/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Humanos , Enlace de Hidrógeno , Mutación Missense , Unión Proteica , Relación Estructura-Actividad , Uridina Difosfato Galactosa/genética , Uridina Difosfato Galactosa/metabolismo
3.
J Biol Chem ; 287(34): 28666-74, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22740701

RESUMEN

N-acetyllactosamine is the most prevalent disaccharide moiety in the glycans on the surface of mammalian cells and often found as repeat units in the linear and branched polylactosamines, known as i- and I-antigen, respectively. The ß1-4-galactosyltransferase-I (ß4Gal-T1) enzyme is responsible for the synthesis of the N-acetyllactosamine moiety. To understand its oligosaccharide acceptor specificity, we have previously investigated the binding of tri- and pentasaccharides of N-glycan with a GlcNAc at their nonreducing end and found that the extended sugar moiety in these acceptor substrates binds to the crevice present at the acceptor substrate binding site of the ß4Gal-T1 molecule. Here we report seven crystal structures of ß4Gal-T1 in complex with an oligosaccharide acceptor with a nonreducing end GlcNAc that has a ß1-6-glycosidic link and that are analogous to either N-glycan or i/I-antigen. In the crystal structure of the complex of ß4Gal-T1 with I-antigen analog pentasaccharide, the ß1-6-branched GlcNAc moiety is bound to the sugar acceptor binding site of the ß4Gal-T1 molecule in a way similar to the crystal structures described previously; however, the extended linear tetrasaccharide moiety does not interact with the previously found extended sugar binding site on the ß4Gal-T1 molecule. Instead, it interacts with the different hydrophobic surface of the protein molecule formed by the residues Tyr-276, Trp-310, and Phe-356. Results from the present and previous studies suggest that ß4Gal-T1 molecule has two different oligosaccharide binding regions for the binding of the extended oligosaccharide moiety of the acceptor substrate.


Asunto(s)
Acetilglucosamina/química , Oligosacáridos de Cadena Ramificada/química , Acetilglucosamina/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Galactosiltransferasas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Oligosacáridos de Cadena Ramificada/metabolismo , Estructura Terciaria de Proteína
4.
Bioconjug Chem ; 24(1): 144-52, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23259695

RESUMEN

On the basis of the crystal structure of bovine ß4Gal-T1 enzyme, mutation of a single amino acid Y289 to L289 (Y289L) changed its donor specificity from Gal to N-acetyl-galactosamine (GalNAc). A chemoenzymatic method that uses GalNAc analogues like GalNAz or 2-keto-Gal as sugar donors with the enzyme Y289L-ß4Gal-T1 has identified hundreds of cytosolic and nuclear proteins that have O-GlcNAc modifications. To avoid potential cytotoxicity at Mn(2+) concentrations required to selectively modify GlcNAc residues on the surface of live cells, we have engineered a Mg(2+)-dependent enzyme. Previously, we found that the mutation of the metal-binding residue Met-344 to His-344 in bovine ß4Gal-T1 enzyme altered its metal-ion specificity in such a way that the M344H-ß4Gal-T1 enzyme exhibits better catalytic activity with Mg(2+) than with Mn(2+). Here, we find that, when these two mutations are combined, the double mutant, Y289L-M344H-ß4Gal-T1, transfers GalNAc and its analogue sugars to the acceptor GlcNAc in the presence of Mg(2+). Using this mutant enzyme, we have detected free GlcNAc residues on the surface glycans of live HeLa cells and platelets. The specific transfer of a synthetic sugar with a chemical handle to the terminal GlcNAc residues on the surface of live cells provides a novel tool for selective modification, detection, and isolation of GlcNAc-ending glycans present on the cellular surface.


Asunto(s)
Acetilglucosamina/análisis , Acetilglucosamina/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Glicoconjugados/metabolismo , Mutación Puntual , Animales , Plaquetas/metabolismo , Bovinos , Galactosiltransferasas/química , Expresión Génica , Glicoconjugados/química , Células HeLa , Humanos , Magnesio/metabolismo , Modelos Moleculares , Ingeniería de Proteínas
5.
Glycoconj J ; 30(9): 835-42, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23942731

RESUMEN

6-sulfate modified N-acetylglucosamine (6-sulfo-GlcNAc) is often found as part of many biologically important carbohydrate epitopes such as 6-sulfo-Le(X). In these epitopes, the 6-sulfo-GlcNAc moiety is extended by a galactose sugar in a ß1-4 linkage. The ß4GalT1 enzyme transfers galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc) in the presence of manganese. Here we report that the ß4GalT1 enzyme transfers Gal to the 6-sulfo-GlcNAc and 4-methylumbelliferyl-6-sulfo-N-acetyl-ß-D-glucosaminide (6-sulfo-ßGlcNAc-MU) acceptor substrates, although with very low efficiency. To understand the effect that the 6-sulfate group on the GlcNAc acceptor has on the catalytic activity of the ß4GalT1 molecule, we have determined the crystal structure of the catalytic domain of bovine ß4GalT1 mutant enzyme M344H-ß4GalT1 complex with the 6-sulfo-GlcNAc molecule. In the crystal structure, the 6-sulfo-GlcNAc is bound to the protein in a way that is similar to the GlcNAc molecule. However, the 6-sulfate group engages in additional interactions with the hydrophobic region, residues 276-285, of the protein molecule, and this group is found wedged between the aromatic side chains of Phe-280 and Trp314 residues. Since the side chain of the Trp314 residue undergoes conformational changes during the catalytic cycle of the enzyme, molecular interaction between Trp314 and the 6-sulfate group might hinder this conformational change. Therefore, the lack of a favorable binding environment, together with hindrance to the conformational changes, might be responsible for the poor catalytic activity.


Asunto(s)
Acetilglucosamina/metabolismo , Galactosiltransferasas/química , Acetilglucosamina/química , Secuencia de Aminoácidos , Animales , Bovinos , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Datos de Secuencia Molecular , Especificidad por Sustrato
6.
Glycobiology ; 22(3): 379-88, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21868414

RESUMEN

In recent years, sugars with a unique chemical handle have been used to detect and elucidate the function of glycoconjugates. Such chemical handles have generally been part of an N-acetyl moiety of a sugar. We have previously developed several applications using the single mutant Y289L-ß1,4-galactosyltransferase I (Y289L-ß4Gal-T1) and the wild-type polypeptide-α-GalNAc-T enzymes with UDP-C2-keto-Gal. Here, we describe for the first time that the GlcNAc-transferring enzymes-R228K-Y289L-ß4Gal-T1 mutant enzyme, the wild-type human ß1,3-N-acetylglucosaminyltransferase-2 and human Maniac Fringe-can also transfer the GlcNAc analog C2-keto-Glc molecule from UDP-C2-keto-Glc to their respective acceptor substrates. Although the R228K-Y289L-ß4Gal-T1 mutant enzyme transfers the donor sugar substrate GlcNAc or its analog C2-keto-Glc only to its natural acceptor substrate, GlcNAc, it does not transfer to its analog C2-keto-Glc. Thus, these observations suggest that the GlcNAc-transferring glycosyltransferases can generally accommodate a chemical handle in the N-acetyl-binding cavity of the donor sugar substrate, but not in the N-acetyl-binding cavity of the acceptor sugar.


Asunto(s)
Galactosa/análogos & derivados , Galactosa/química , Hexosiltransferasas/química , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , N-Acetilglucosaminiltransferasas/química , Acetilglucosamina/química , Sustitución de Aminoácidos , Sitios de Unión , Conformación de Carbohidratos , Secuencia de Carbohidratos , Cromatografía de Afinidad , Clonación Molecular , Escherichia coli , Factor VII/química , Glucosiltransferasas , Glicosilación , Hexosiltransferasas/biosíntesis , Hexosiltransferasas/genética , Hexosiltransferasas/aislamiento & purificación , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/aislamiento & purificación , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , N-Acetilglucosaminiltransferasas/biosíntesis , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/aislamiento & purificación , Oligosacáridos/química , Unión Proteica , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Propiedades de Superficie
7.
J Biol Chem ; 285(20): 15619-15626, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20236943

RESUMEN

The beta1,4-galactosyltransferase-7 (beta4Gal-T7) enzyme, one of seven members of the beta4Gal-T family, transfers in the presence of manganese Gal from UDP-Gal to an acceptor sugar (xylose) that is attached to a side chain hydroxyl group of Ser/Thr residues of proteoglycan proteins. It exhibits the least protein sequence similarity with the other family members, including the well studied family member beta4Gal-T1, which, in the presence of manganese, transfers Gal from UDP-Gal to GlcNAc. We report here the crystal structure of the catalytic domain of beta4Gal-T7 from Drosophila in the presence of manganese and UDP at 1.81 A resolution. In the crystal structure, a new manganese ion-binding motif (HXH) has been observed. Superposition of the crystal structures of beta4Gal-T7 and beta4Gal-T1 shows that the catalytic pocket and the substrate-binding sites in these proteins are similar. Compared with GlcNAc, xylose has a hydroxyl group (instead of an N-acetyl group) at C2 and lacks the CH(2)OH group at C5; thus, these protein structures show significant differences in their acceptor-binding site. Modeling of xylose in the acceptor-binding site of the beta4Gal-T7 crystal structure shows that the aromatic side chain of Tyr(177) interacts strongly with the C5 atom of xylose, causing steric hindrance to any additional group at C5. Because Drosophila Cd7 has a 73% protein sequence similarity to human Cd7, the present crystal structure offers a structure-based explanation for the mutations in human Cd7 that have been linked to Ehlers-Danlos syndrome.


Asunto(s)
N-Acetil-Lactosamina Sintasa/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Drosophila melanogaster , Humanos , Manganeso/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , N-Acetil-Lactosamina Sintasa/genética , N-Acetil-Lactosamina Sintasa/metabolismo , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Uridina Difosfato/metabolismo
9.
Tetrahedron ; 67(11): 2013-2017, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21436962

RESUMEN

The potential of wild-type and mutant glycosyltransferases to produce glycoconjugates carrying sugar moieties with chemical handles has made it possible to conjugate biomolecules with orthogonal reacting groups at specific sites. The synthesis of UDP-2-(2-ketopropyl)galactose has been previously carried out, albeit with difficulty and low efficiency. A modified approach has been developed for the synthesis of UDP-2-(2-ketopropyl)glucose and UDP-2-(2-ketopropyl)galactose, allowing better access to the desired test compounds, the UDP-2-(2-ketopropyl)glucose and UDP-2-(2-ketopropyl)galactose analogs were synthesized in 8 steps and 4.8% and 5.3% overall yield respectively, an improvement over the 1(st) generation synthesis involving 8 steps and an overall yield of 0.7%.

10.
Biochem Biophys Res Commun ; 394(3): 679-84, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20226765

RESUMEN

The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of a large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, beta-1,4-galactosyltransferase-7 (beta4Gal-T7), in E. coli. The enzyme beta4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, beta4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6x His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-beta4Gal-T7 fusion protein, the unique protease cleavage site allows the protein beta4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded beta4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.


Asunto(s)
Galactosiltransferasas/metabolismo , Galectina 1/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Dicroismo Circular , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosiltransferasas/química , Galactosiltransferasas/genética , Galectina 1/química , Galectina 1/genética , Humanos , Biosíntesis de Proteínas , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Solubilidad , Espectrofotometría Ultravioleta
11.
Trends Biochem Sci ; 30(1): 53-62, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15653326

RESUMEN

Oligosaccharide chains of glycoproteins, glycolipids and glycosaminoglycans are synthesized by glycosyltransferases by the transfer of specific glycosyl moieties from activated sugar-nucleotide donors to specific acceptors. Structural studies on several of these enzymes have shown that one or two flexible loops at the substrate-binding site of the enzymes undergo a marked conformational change from an open to a closed conformation on binding the donor substrate. This conformational change, in which the loop acts as a lid covering the bound donor substrate, creates an acceptor-binding site. After the glycosyl unit is transferred from the donor to the acceptor, the saccharide product is ejected and the loop reverts to its native conformation, thereby releasing the remaining nucleotide moiety. The specificity of the sugar donor is determined by a few residues in the sugar-nucleotide-binding pocket of the enzyme that are conserved among the family members from different species.


Asunto(s)
Glicosiltransferasas/química , Modelos Moleculares , Oligosacáridos/química , Animales , Sitios de Unión , Glicosiltransferasas/metabolismo , Humanos , Oligosacáridos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
12.
Proteins ; 74(3): 760-76, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18712827

RESUMEN

Computational models provide insight into the structure-function relationship in proteins. These approaches, especially those based on normal mode analysis, can identify the accessible motion space around a given equilibrium structure. The large magnitude, collective motions identified by these methods are often well aligned with the general direction of the expected conformational transitions. However, these motions cannot realistically be extrapolated beyond the local neighborhood of the starting conformation. In this article, the iterative cluster-NMA (icNMA) method is presented for traversing the energy landscape from a starting conformation to a desired goal conformation. This is accomplished by allowing the evolving geometry of the intermediate structures to define the local accessible motion space, and thus produce an appropriate displacement. Following the derivation of the icNMA method, a set of sample simulations are performed to probe the robustness of the model. A detailed analysis of beta1,4-galactosyltransferase-T1 is also given, to highlight many of the capabilities of icNMA. Remarkably, during the transition, a helix is seen to be extended by an additional turn, emphasizing a new unknown role for secondary structures to absorb slack during transitions. The transition pathway for adenylate kinase, which has been frequently studied in the literature, is also discussed.


Asunto(s)
Conformación Proteica , Análisis por Conglomerados , Biología Computacional , Simulación por Computador , Bases de Datos de Proteínas , Pliegue de Proteína , Proteínas/química
13.
Bioconjug Chem ; 20(3): 608-18, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19245254

RESUMEN

Studies on wild-type and mutant glycosyltransferases have shown that they can transfer modified sugars with a versatile chemical handle, such as keto or azido group, that can be used for conjugation chemistry and detection of glycan residues on glycoconjugates. To detect the most prevalent glycan epitope, N-acetyllactosamine (LacNAc (Galbeta1-4GalNAcbeta)), we have mutated a bovine alpha1,3-galactosyltransferse (alpha3Gal-T)() enzyme which normally transfers Gal from UDP-Gal to the LacNAc acceptor, to transfer GalNAc or C2-modified galactose from their UDP derivatives. The alpha3Gal-T enzyme belongs to the alpha3Gal/GalNAc-T family that includes human blood group A and B glycosyltransferases, which transfer GalNAc and Gal, respectively, to the Gal moiety of the trisaccharide Fucalpha1-2Galbeta1-4GlcNAc. On the basis of the sequence and structure comparison of these enzymes, we have carried out rational mutation studies on the sugar donor-binding residues in bovine alpha3Gal-T at positions 280 to 282. A mutation of His280 to Leu/Thr/Ser/Ala or Gly and Ala281 and Ala282 to Gly resulted in the GalNAc transferase activity by the mutant alpha3Gal-T enzymes to 5-19% of their original Gal-T activity. We show that the mutants (280)SGG(282) and (280)AGG(282) with the highest GalNAc-T activity can also transfer modified sugars such as 2-keto-galactose or GalNAz from their respective UDP-sugar derivatives to LacNAc moiety present at the nonreducing end of glycans of asialofetuin, thus enabling the detection of LacNAc moiety of glycoproteins and glycolipids by a chemiluminescence method.


Asunto(s)
Amino Azúcares/metabolismo , Galactosa/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Mutación , Secuencia de Aminoácidos , Amino Azúcares/análisis , Animales , Secuencia de Bases , Bovinos , Galactosiltransferasas/química , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
14.
Bioconjug Chem ; 20(6): 1228-36, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19425533

RESUMEN

The Fc N-glycan chains of four therapeutic monoclonal antibodies (mAbs), namely, Avastin, Rituxan, Remicade, and Herceptin, released by PNGase F, show by MALDI analysis that these biantennary N-glycans are a mixture of G0, G1, and G2 glycoforms. The G0 glycoform has no galactose on the terminal GlcNAc residues, and the G1 and G2 glycoforms have one or two terminal galactose residues, respectively, while no N-glycan with terminal sialic acid residue is observed. We show here that under native conditions we can convert the N-glycans of these mAbs to a homogeneous population of G0 glycoform using beta1,4 galactosidase from Streptococcus pneumoniae. The G0 glycoforms of mAbs can be galactosylated with a modified galactose having a chemical handle at the C2 position, such as ketone or azide, using a mutant beta1,4-galactosyltransferase (beta1,4Gal-T1-Y289L). The addition of the modified galactose at a specific glycan residue of a mAb permits the coupling of a biomolecule that carries an orthogonal reactive group. The linking of a biotinylated or a fluorescent dye carrying derivatives selectively occurs with the modified galactose, C2-keto-Gal, at the heavy chain of these mAbs, without altering their antigen binding activities, as shown by indirect enzyme linked immunosorbent assay (ELISA) and fluorescence activated cell sorting (FACS) methods. Our results demonstrate that the linking of cargo molecules to mAbs via glycans could prove to be an invaluable tool for potential drug targeting by immunotherapeutic methods.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antígenos de Superficie/análisis , Colorantes Fluorescentes/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Polisacáridos/metabolismo , Animales , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/inmunología , Antígenos de Superficie/inmunología , Antígenos de Superficie/metabolismo , Sitios de Unión , Biotinilación , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Galactosa/metabolismo , Glucosamina/metabolismo , Glicosilación , Humanos , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oligosacáridos/metabolismo , Polisacáridos/química , Receptor ErbB-2/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Coloración y Etiquetado , Especificidad por Sustrato , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Bioconjug Chem ; 20(7): 1383-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19507852

RESUMEN

For multiple site-specific conjugations of bioactive molecules to a single-chain antibody (scFv) molecule, we have constructed a human anti HER2 receptor, scFv, with a C-terminal fusion polypeptide containing 1, 3, or 17 threonine (Thr) residues. The C-terminal extended fusion polypeptides of these recombinant scFv fusion proteins are used as the acceptor substrate for human polypeptide-alpha-Nu-acetylgalactosaminyltransferase II (h-ppGalNAc-T2) that transfers either GalNAc or 2-keto-Gal, a modified galactose with a chemical handle, from their respective UDP-sugars to the side-chain hydroxyl group of the Thr residue(s). The recombinant scFv fusion proteins are expressed in E. coli as inclusion bodies and in vitro refolded and glycosylated with h-ppGalNAc-T2. Upon protease cleavage, the MALDI-TOF spectra of the glycosylated C-terminal fusion polypeptides showed that the glycosylated scFv fusion protein with a single Thr residue is fully glycosylated with a single 2-keto-Gal, whereas the glycosylated scFv fusion protein with 3 and 17 Thr residues is found as an equal mixture of 2-3 and 5-8 2-keto-Gal glycosylated fusion proteins, respectively. These fusion scFv proteins with the modified galactose are then conjugated with a fluorescence probe, Alexa488, that carries an orthogonal reactive group. The fluorescence labeled scFv proteins bind specifically to a human breast cancer cell line (SK-BR-3) that overexpresses the HER2 receptor, indicating that the in vitro folded scFv fusion proteins are biologically active and the presence of conjugated multiple Alexa488 probes in their C-terminal end does not interfere with their binding to the antigen.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Colorantes Fluorescentes/química , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Línea Celular Tumoral , Escherichia coli/genética , Expresión Génica , Glicosilación , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Receptor ErbB-2/genética
16.
J Mol Biol ; 365(3): 570-6, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17084860

RESUMEN

Structures of glycoconjugate N-glycans and glycolipids of invertebrates show significant differences from those of vertebrates. These differences are due largely to the vertebrate beta1,4-galactosyltransferase-1 (beta4Gal-T1), which is found as a beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAc-T1) in invertebrates. Mutation of Tyr285 to Ile or Leu in human beta4Gal-T1 converts the enzyme into an equally efficient beta4GalNAc-T1. A comparison of all the human beta4Gal-T1 ortholog enzymes shows that this Tyr285 residue in human beta4Gal-T1 is conserved either as Tyr or Phe in all vertebrate enzymes, while in all invertebrate enzymes it is conserved as an Ile or Leu. We find that mutation of the corresponding Ile residue to Tyr in Drosophila beta4GalNAc-T1 converts the enzyme to a beta4Gal-T1 by reducing its N-acetylgalactosaminyltransferase activity by nearly 1000-fold, while enhancing its galactosyltransferase activity by 80-fold. Furthermore, we find that, similar to the vertebrate/mammalian beta4Gal-T1 enzymes, the wild-type Drosophila beta4GalNAc-T1 enzyme binds to a mammary gland-specific protein, alpha-lactalbumin (alpha-LA). Thus, it would seem that, during the evolution of vertebrates from invertebrates over 500 million years ago, beta4Gal-T1 appeared as a result of the single amino acid substitution of Tyr or Phe for Leu or Ile in the invertebrate beta4GalNAc-T1. Subsequently, the pre-existing alpha-LA-binding site was utilized during mammalian evolution to synthesize lactose in the mammary gland during lactation.


Asunto(s)
Sustitución de Aminoácidos , Evolución Molecular , Invertebrados/metabolismo , Polisacáridos/metabolismo , Vertebrados/metabolismo , Acetilgalactosamina/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Drosophila/enzimología , Galactosiltransferasas/química , Glicoconjugados/metabolismo , Humanos , Invertebrados/enzimología , Lactalbúmina/metabolismo , Manganeso/metabolismo , Datos de Secuencia Molecular , N-Acetilgalactosaminiltransferasas/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Uridina Difosfato/metabolismo
17.
Expert Opin Drug Deliv ; 5(2): 149-53, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18248315

RESUMEN

BACKGROUND: The delivery of drugs to the proposed site of action is a challenging task. Tissue and cell-specific guiding molecules are being used to carry a cargo of therapeutic molecules. The cargo molecules need to be conjugated in a site-specific manner to the therapeutic molecules such that the bioefficacy of these molecules is not compromised. METHODS: Using wild-type and mutant glycosyltransferases, the sugar moiety with a unique chemical handle is incorporated at a specific site in the cargo or therapeutic molecules, making it possible to conjugate these molecules through the chemical handle present on the modified glycan. RESULTS/CONCLUSIONS: The modified glycan residues introduced at specific sites on the cargo molecule make it possible to conjugate fluorophores for ELISA-based assays, radionuclides for imaging and immunotherapy applications, lipids for the assembly of immunoliposomes, cytotoxic drugs, cytokines, or toxins for antibody-based cancer therapy and the development of a targeted drug delivery system.


Asunto(s)
Medios de Contraste/química , Sistemas de Liberación de Medicamentos/métodos , Glicosiltransferasas/química , Preparaciones Farmacéuticas/química , Animales , Sitios de Unión , Medios de Contraste/administración & dosificación , Glicosiltransferasas/genética , Humanos , Imagen por Resonancia Magnética , Mutación , Preparaciones Farmacéuticas/administración & dosificación
18.
J Mol Biol ; 357(5): 1619-33, 2006 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-16497331

RESUMEN

During the catalytic cycle of beta1,4-galactosyltransferase-1 (Gal-T1), upon the binding of Mn(2+) followed by UDP-Gal, two flexible loops, a long and a short loop, change their conformation from open to closed. We have determined the crystal structures of a human M340H-Gal-T1 mutant in the open conformation (apo-enzyme), its Mn(2+) and Mn(2+)-UDP-Gal-bound complexes, and of a pentenary complex of bovine Gal-T1-Mn(2+)-UDP-GalNAc-Glc-alpha-lactalbumin. These studies show that during the conformational changes in Gal-T1, the coordination of Mn(2+) undergoes significant changes. It loses a coordination bond with a water molecule bound in the open conformation of Gal-T1 while forming a new coordination bond with another water molecule in the closed conformation, creating an active ground-state structure that facilitates enzyme catalysis. In the crystal structure of the pentenary complex, the N-acetylglucosamine (GlcNAc) moiety is found cleaved from UDP-GalNAc and is placed 2.7A away from the O4 oxygen atom of the acceptor Glc molecule, yet to form the product. The anomeric C1 atom of the cleaved GalNAc moiety has only two covalent bonds with its non-hydrogen atoms (O5 and C2 atoms), similar to either an oxocarbenium ion or N-acetylgalactal form, which are crystallographically indistinguishable at the present resolution. The structure also shows that the newly formed, metal-coordinating water molecule forms a hydrogen bond with the beta-phosphate group of the cleaved UDP moiety. This hydrogen bond formation results in the rotation of the beta-phosphate group of UDP away from the cleaved GalNAc moiety, thereby preventing the re-formation of the UDP-sugar during catalysis. Therefore, this water molecule plays an important role during catalysis in ensuring that the catalytic reaction proceeds in a forward direction.


Asunto(s)
N-Acetil-Lactosamina Sintasa/química , N-Acetil-Lactosamina Sintasa/metabolismo , Conformación Proteica , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Animales , Dominio Catalítico , Bovinos , Cristalografía por Rayos X , Galactosa/análisis , Humanos , Manganeso/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , N-Acetil-Lactosamina Sintasa/genética , Uridina Difosfato/análisis , Agua/química
19.
Curr Opin Struct Biol ; 14(5): 593-600, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15465321

RESUMEN

Beta-1,4-galactosyltransferase-1, a housekeeping enzyme that functions in the synthesis of glycoconjugates, has two flexible loops, one short and one long. Upon binding a metal ion and UDP-galactose, the loops change from an open to a closed conformation, repositioning residues to lock the ligands in place. Residues at the N-terminal region of the long loop form the metal-binding site and those at the C-terminal region form a helix, which becomes part of the binding site for the oligosaccharide acceptor; the remaining residues cover the bound sugar-nucleotide. After binding of the oligosaccharide acceptor and transfer of the galactose moiety, the product disaccharide unit is ejected and the enzyme returns to the open conformation, repeating the catalytic cycle.


Asunto(s)
N-Acetil-Lactosamina Sintasa/metabolismo , Catálisis , Lactosa Sintasa/química , Lactosa Sintasa/metabolismo , Metales/metabolismo , Modelos Moleculares , Estructura Molecular , N-Acetil-Lactosamina Sintasa/química , Conformación Proteica
20.
J Mol Biol ; 353(1): 53-67, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16157350

RESUMEN

beta-1,4-Galactosyltransferase-I (beta4Gal-T1) transfers galactose from UDP-galactose to N-acetylglucosamine (GlcNAc) residues of the branched N-linked oligosaccharide chains of glycoproteins. In an N-linked biantennary oligosaccharide chain, one antenna is attached to the 3-hydroxyl-(1,3-arm), and the other to the 6-hydroxyl-(1,6-arm) group of mannose, which is beta-1,4-linked to an N-linked chitobiose, attached to the aspargine residue of a protein. For a better understanding of the branch specificity of beta4Gal-T1 towards the GlcNAc residues of N-glycans, we have carried out kinetic and crystallographic studies with the wild-type human beta4Gal-T1 (h-beta4Gal-T1) and the mutant Met340His-beta4Gal-T1 (h-M340H-beta4Gal-T1) in complex with a GlcNAc-containing pentasaccharide and several GlcNAc-containing trisaccharides present in N-glycans. The oligosaccharides used were: pentasaccharide GlcNAcbeta1,2-Manalpha1,6 (GlcNAcbeta1,2-Manalpha1,3)Man; the 1,6-arm trisaccharide, GlcNAcbeta1,2-Manalpha1,6-Manbeta-OR (1,2-1,6-arm); the 1,3-arm trisaccharides, GlcNAcbeta1,2-Manalpha1,3-Manbeta-OR (1,2-1,3-arm) and GlcNAcbeta1,4-Manalpha1,3-Manbeta-OR (1,4-1,3-arm); and the trisaccharide GlcNAcbeta1,4-GlcNAcbeta1,4-GlcNAc (chitotriose). With the wild-type h-beta4Gal-T1, the K(m) of 1,2-1,6-arm is approximately tenfold lower than for 1,2-1,3-arm and 1,4-1,3-arm, and 22-fold lower than for chitotriose. Crystal structures of h-M340H-beta4Gal-T1 in complex with the pentasaccharide and various trisaccharides at 1.9-2.0A resolution showed that beta4Gal-T1 is in a closed conformation with the oligosaccharide bound to the enzyme, and the 1,2-1,6-arm trisaccharide makes the maximum number of interactions with the enzyme, which is in concurrence with the lowest K(m) for the trisaccharide. Present studies suggest that beta4Gal-T1 interacts preferentially with the 1,2-1,6-arm trisaccharide rather than with the 1,2-1,3-arm or 1,4-1,3-arm of a bi- or tri-antennary oligosaccharide chain of N-glycan.


Asunto(s)
Galactosiltransferasas/química , Galactosiltransferasas/metabolismo , Metionina/genética , Mutación/genética , Oligosacáridos/química , Oligosacáridos/metabolismo , Conformación de Carbohidratos , Catálisis , Cristalografía por Rayos X , Galactosiltransferasas/genética , Humanos , Cinética , Metionina/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA