Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 224: 112619, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34403945

RESUMEN

Studying the mechanism of drought stress in soybean root at vegetative cotyledon (VC) stage by soaking seeds with uniconazole revealed new insights into soybean stress physiology. Therefore, a completely random pot experiments with different time gradients for water cut-off (24, 48, 72, 96 and 120 h, respectively) were carried out with uniconazole (0.4 mgL-1) with respect to morphological, microscopic, ultramicroscopic, physiological, and molecular studies on varieties Hefeng55 (H50, drought tolerant variety) and Kenfeng16 (K16, drought susceptible variety). Results revealed that uniconazole effectively alleviated the inhibition on root growth caused by drought stress, increased the number of root tips, significantly reduced lignification of vessels, alleviated the damage of mitochondria and nucleus caused by drought stress, further strengthened osmotic adjustment system and antioxidant system, especially when the soil moisture content was less than 14%, broke expression restriction of IAA due to drought stress, and inhibited GA3 generation; finally, we found that high-intensity drought stress significantly increased the expression levels of GmNAC003, GmNAC004, GmNAC015, GmNAC020, GmHK07, GmRR01, GmRR02 and GmRR16 genes relating to drought tolerance, while uniconazole had a significant inhibitory effect on GmNAC003, GmNAC004, GmNAC015, GmNAC020, GmRR01, GmRR02 and GmRR16 genes. Our results provided a reference for the mechanism of drought resistance in legume and the effect of uniconazole on alleviating drought stress.

2.
Acta Crystallogr C ; 65(Pt 3): o85-7, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19265228

RESUMEN

A novel three-dimensional framework of 2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole dihydrate, C(11)H(10)N(4).2H(2)O or L.2H(2)O, (I), in which L acts as both hydrogen-bond acceptor and donor in the supramolecular construction with water, has been obtained by self-assembly reaction of L with H(2)O. The two independent water molecules are hydrogen bonded alternately with each other to form a one-dimensional infinite zigzag water chain. These water chains are linked by the benzimidazole molecules into a three-dimensional framework, in which each organic molecule is hydrogen bonded by three water molecules. This study shows that the diversity of hydrogen-bonded patterns plays a crucial role in the formation of the three-dimensional framework. More significantly, as water molecules are important in contributing to the conformation, stability, function and dynamics of biomacromolecules, the infinite chains of hydrogen-bonded water molecules seen in (I) may be a useful model for water in other chemical and biological processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA