Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39077922

RESUMEN

Major depressive disorder frequently leads to cognitive impairments, significantly affecting patients' quality of life. However, the neurobiological mechanisms underlying cognitive deficits remain unclear. This study aimed to explore multimodal imaging biomarkers associated with cognitive function in major depressive disorder. Five cognitive scores (sustained attention, visual recognition memory, pattern recognition memory, executive function, and working memory) were used as references to guide the fusion of gray matter volume and amplitude of the low frequency fluctuation. Social function was assessed after 2 yr. Linear regression analysis was performed to identify brain features that were associated with social function of patients with major depressive disorder. Finally, we included 131 major depressive disorder and 145 healthy controls. A multimodal frontal-insula-occipital network associated with sustained attention was found to be associated with social functioning in major depressive disorders. Analysis across different cognitive domains revealed that gray matter volume exhibited greater sensitivity to differences, while amplitude of the low frequency fluctuation consistently decreased in the right temporal-occipital-hippocampus circuit. The consistent functional changes across the 5 cognitive domains were related to symptom severity. Overall, these findings provide insights into biomarkers associated with multiple cognitive domains in major depressive disorder. These results may contribute to the development of effective treatment targeting cognitive deficits and social function.


Asunto(s)
Encéfalo , Cognición , Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Femenino , Masculino , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Cognición/fisiología , Persona de Mediana Edad , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Pruebas Neuropsicológicas , Imagen Multimodal , Función Ejecutiva/fisiología , Atención/fisiología , Adulto Joven , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología
2.
Neuroimage ; 293: 120616, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697587

RESUMEN

Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject's representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.


Asunto(s)
Corteza Cerebral , Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Conectoma/métodos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Corteza Cerebral/anatomía & histología , Aprendizaje Automático , Femenino , Masculino , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Algoritmos , Reproducibilidad de los Resultados
3.
Hum Brain Mapp ; 45(7): e26694, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727014

RESUMEN

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.


Asunto(s)
Disfunción Cognitiva , Conectoma , Imagen por Resonancia Magnética , Red Nerviosa , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Masculino , Adulto , Femenino , Conectoma/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adulto Joven , Persona de Mediana Edad
4.
Hum Brain Mapp ; 44(1): 119-130, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993678

RESUMEN

Concomitant neuropsychiatric symptoms (NPS) are associated with accelerated Alzheimer's disease (AD) progression. Identifying multimodal brain imaging patterns associated with NPS may help understand pathophysiology correlates AD. Based on the AD continuum, a supervised learning strategy was used to guide four-way multimodal neuroimaging fusion (Amyloid, Tau, gray matter volume, brain function) by using NPS total score as the reference. Loadings of the identified multimodal patterns were compared across the AD continuum. Then, regression analyses were performed to investigate its predictability of longitudinal cognition performance. Furthermore, the fusion analysis was repeated in the four NPS subsyndromes. Here, an NPS-associated pathological-structural-functional covaried pattern was observed in the frontal-subcortical limbic circuit, occipital, and sensor-motor region. Loading of this multimodal pattern showed a progressive increase with the development of AD. The pattern significantly correlates with multiple cognitive domains and could also predict longitudinal cognitive decline. Notably, repeated fusion analysis using subsyndromes as references identified similar patterns with some unique variations associated with different syndromes. Conclusively, NPS was associated with a multimodal imaging pattern involving complex neuropathologies, which could effectively predict longitudinal cognitive decline. These results highlight the possible neural substrate of NPS in AD, which may provide guidance for clinical management.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Encéfalo , Sustancia Gris/patología , Neuroimagen
5.
Neurobiol Dis ; 173: 105838, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35985556

RESUMEN

Transgenic animal models with homologous etiology provide a promising way to pursue the neurobiological substrates of the behavioral deficits in autism spectrum disorder (ASD). Gain-of-function mutations of MECP2 cause MECP2 duplication syndrome, a severe neurological disorder with core symptoms of ASD. However, abnormal brain developments underlying the autistic-like behavioral deficits of MECP2 duplication syndrome are rarely investigated. To this end, a human MECP2 duplication (MECP2-DP) rat model was created by the bacterial artificial chromosome transgenic method. Functional and structural magnetic resonance imaging (MRI) with high-field were performed on 16 male MECP2-DP rats and 15 male wildtype rats at postnatal 28 days, 42 days, and 56 days old. Multimodal fusion analyses guided by locomotor-relevant metrics and social novelty time separately were applied to identify abnormal brain networks associated with diverse behavioral deficits induced by MECP2 duplication. Aberrant functional developments of a core network primarily composed of the dorsal medial prefrontal cortex (dmPFC) and retrosplenial cortex (RSP) were detected to associate with diverse behavioral phenotypes in MECP2-DP rats. Altered developments of gray matter volume were detected in the hippocampus and thalamus. We conclude that gain-of-function mutations of MECP2 induce aberrant functional activities in the default-mode-like network and aberrant volumetric changes in the brain, resulting in autistic-like behavioral deficits. Our results gain critical insights into the biomarker of MECP2 duplication syndrome and the neurobiological underpinnings of the behavioral deficits in ASD.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual Ligada al Cromosoma X , Animales , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Mapeo Encefálico/métodos , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratas
6.
Hum Brain Mapp ; 43(4): 1280-1294, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34811846

RESUMEN

Advances in imaging acquisition techniques allow multiple imaging modalities to be collected from the same subject. Each individual modality offers limited yet unique views of the functional, structural, or dynamic temporal features of the brain. Multimodal fusion provides effective ways to leverage these complementary perspectives from multiple modalities. However, the majority of current multimodal fusion approaches involving functional magnetic resonance imaging (fMRI) are limited to 3D feature summaries that do not incorporate its rich temporal information. Thus, we propose a novel three-way parallel group independent component analysis (pGICA) fusion method that incorporates the first-level 4D fMRI data (temporal information included) by parallelizing group ICA into parallel ICA via a unified optimization framework. A new variability matrix was defined to capture subject-wise functional variability and then link it to the mixing matrices of the other two modalities. Simulation results show that the three-way pGICA provides highly accurate cross-modality linkage estimation under both weakly and strongly correlated conditions, as well as comparable source estimation under different noise levels. Results using real brain imaging data identified one linked functional-structural-diffusion component associated to differences between schizophrenia and controls. This was replicated in an independent cohort, and the identified components were also correlated with major cognitive domains. Functional network connectivity revealed visual-subcortical and default mode-cerebellum pairs that discriminate between schizophrenia and controls. Overall, both simulation and real data results support the use of three-way pGICA to identify multimodal spatiotemporal links and to pursue the study of brain disorders under a single unifying multimodal framework.


Asunto(s)
Encéfalo , Neuroimagen Funcional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa , Análisis Espacial , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Análisis Espacio-Temporal
7.
BMC Med ; 20(1): 286, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36076200

RESUMEN

BACKGROUND: Grip strength is a widely used and well-validated measure of overall health that is increasingly understood to index risk for psychiatric illness and neurodegeneration in older adults. However, existing work has not examined how grip strength relates to a comprehensive set of mental health outcomes, which can detect early signs of cognitive decline. Furthermore, whether brain structure mediates associations between grip strength and cognition remains unknown. METHODS: Based on cross-sectional and longitudinal data from over 40,000 participants in the UK Biobank, this study investigated the behavioral and neural correlates of handgrip strength using a linear mixed effect model and mediation analysis. RESULTS: In cross-sectional analysis, we found that greater grip strength was associated with better cognitive functioning, higher life satisfaction, greater subjective well-being, and reduced depression and anxiety symptoms while controlling for numerous demographic, anthropometric, and socioeconomic confounders. Further, grip strength of females showed stronger associations with most behavioral outcomes than males. In longitudinal analysis, baseline grip strength was related to cognitive performance at ~9 years follow-up, while the reverse effect was much weaker. Further, baseline neuroticism, health, and financial satisfaction were longitudinally associated with subsequent grip strength. The results revealed widespread associations between stronger grip strength and increased grey matter volume, especially in subcortical regions and temporal cortices. Moreover, grey matter volume of these regions also correlated with better mental health and considerably mediated their relationship with grip strength. CONCLUSIONS: Overall, using the largest population-scale neuroimaging dataset currently available, our findings provide the most well-powered characterization of interplay between grip strength, mental health, and brain structure, which may facilitate the discovery of possible interventions to mitigate cognitive decline during aging.


Asunto(s)
Fuerza de la Mano , Salud Mental , Anciano , Bancos de Muestras Biológicas , Encéfalo/diagnóstico por imagen , Estudios Transversales , Femenino , Humanos , Masculino , Reino Unido/epidemiología
8.
BMC Med ; 20(1): 477, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482369

RESUMEN

BACKGROUND: Although electroconvulsive therapy (ECT) is an effective treatment for depression, ECT cognitive impairment remains a major concern. The neurobiological underpinnings and mechanisms underlying ECT antidepressant and cognitive impairment effects remain unknown. This investigation aims to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks and assesses whether they are associated with the ECT-induced electric field (E-field) with an optimal pulse amplitude estimation. METHODS: A single site clinical trial focused on amplitude (600, 700, and 800 mA) included longitudinal multimodal imaging and clinical and cognitive assessments completed before and immediately after the ECT series (n = 54) for late-life depression. Another two independent validation cohorts (n = 84, n = 260) were included. Symptom and cognition were used as references to supervise fMRI and sMRI fusion to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks. Correlations between ECT-induced E-field within these two networks and clinical and cognitive outcomes were calculated. An optimal pulse amplitude was estimated based on E-field within antidepressant-response and cognitive-impairment networks. RESULTS: Decreased function in the superior orbitofrontal cortex and caudate accompanied with increased volume in medial temporal cortex showed covarying functional and structural alterations in both antidepressant-response and cognitive-impairment networks. Volume increases in the hippocampal complex and thalamus were antidepressant-response specific, and functional decreases in the amygdala and hippocampal complex were cognitive-impairment specific, which were validated in two independent datasets. The E-field within these two networks showed an inverse relationship with HDRS reduction and cognitive impairment. The optimal E-filed range as [92.7-113.9] V/m was estimated to maximize antidepressant outcomes without compromising cognitive safety. CONCLUSIONS: The large degree of overlap between antidepressant-response and cognitive-impairment networks challenges parameter development focused on precise E-field dosing with new electrode placements. The determination of the optimal individualized ECT amplitude within the antidepressant and cognitive networks may improve the treatment benefit-risk ratio. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02999269.


Asunto(s)
Disfunción Cognitiva , Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Neurobiología , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/terapia
9.
IEEE Signal Process Mag ; 39(4): 107-118, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36712588

RESUMEN

Predictive modeling of neuroimaging data (predictive neuroimaging) for evaluating individual differences in various behavioral phenotypes and clinical outcomes is of growing interest. However, the field is experiencing challenges regarding the interpretability of the results. Approaches to defining the specific contribution of functional connections, regions, or networks in prediction models are urgently needed, which may help explore the underlying mechanisms. In this article, we systematically review the methods and applications for interpreting brain signatures derived from predictive neuroimaging based on a survey of 326 research articles. Strengths, limitations, and the suitable conditions for major interpretation strategies are also deliberated. In-depth discussion of common issues in existing literature and the corresponding recommendations to address these pitfalls are provided. We highly recommend exhaustive validation on the reliability and interpretability of the biomarkers across multiple datasets and contexts, which thereby could translate technical advances in neuroimaging into concrete improvements in precision medicine.

10.
Cereb Cortex ; 30(3): 888-900, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31364696

RESUMEN

Scores on intelligence tests are strongly predictive of various important life outcomes. However, the gender discrepancy on intelligence quotient (IQ) prediction using brain imaging variables has not been studied. To this aim, we predicted individual IQ scores for males and females separately using whole-brain functional connectivity (FC). Robust predictions of intellectual capabilities were achieved across three independent data sets (680 subjects) and two intelligence measurements (IQ and fluid intelligence) using the same model within each gender. Interestingly, we found that intelligence of males and females were underpinned by different neurobiological correlates, which are consistent with their respective superiority in cognitive domains (visuospatial vs verbal ability). In addition, the identified FC patterns are uniquely predictive on IQ and its sub-domain scores only within the same gender but neither for the opposite gender nor on the IQ-irrelevant measures such as temperament traits. Moreover, females exhibit significantly higher IQ predictability than males in the discovery cohort. This findings facilitate our understanding of the biological basis of intelligence by demonstrating that intelligence is underpinned by a variety of complex neural mechanisms that engage an interacting network of regions-particularly prefrontal-parietal and basal ganglia-whereas the network pattern differs between genders.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Pruebas de Inteligencia , Inteligencia/fisiología , Caracteres Sexuales , Adolescente , Adulto , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
11.
Neuroimage ; 207: 116370, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31751666

RESUMEN

Although both resting and task-induced functional connectivity (FC) have been used to characterize the human brain and cognitive abilities, the potential of task-induced FCs in individualized prediction for out-of-scanner cognitive traits remains largely unexplored. A recent study Greene et al. (2018) predicted the fluid intelligence scores using FCs derived from rest and multiple task conditions, suggesting that task-induced brain state manipulation improved prediction of individual traits. Here, using a large dataset incorporating fMRI data from rest and 7 distinct task conditions, we replicated the original study by employing a different machine learning approach, and applying the method to predict two reading comprehension-related cognitive measures. Consistent with their findings, we found that task-based machine learning models often outperformed rest-based models. We also observed that combining multi-task fMRI improved prediction performance, yet, integrating the more fMRI conditions can not necessarily ensure better predictions. Compared with rest, the predictive FCs derived from language and working memory tasks were highlighted with more predictive power in predominantly default mode and frontoparietal networks. Moreover, prediction models demonstrated high stability to be generalizable across distinct cognitive states. Together, this replication study highlights the benefit of using task-based FCs to reveal brain-behavior relationships, which may confer more predictive power and promote the detection of individual differences of connectivity patterns underlying relevant cognitive traits, providing strong evidence for the validity and robustness of the original findings.


Asunto(s)
Conducta/fisiología , Encéfalo/fisiología , Individualidad , Memoria a Corto Plazo/fisiología , Vías Nerviosas/fisiología , Adulto , Conectoma/métodos , Femenino , Humanos , Lenguaje , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/fisiología , Descanso/fisiología
12.
Hum Brain Mapp ; 41(7): 1775-1785, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31904902

RESUMEN

Electroconvulsive therapy is regarded as the most effective antidepressant treatment for severe and treatment-resistant depressive episodes. Despite the efficacy of electroconvulsive therapy, the neurobiological underpinnings and mechanisms underlying electroconvulsive therapy induced antidepressant effects remain unclear. The objective of this investigation was to identify electroconvulsive therapy treatment responsive multimodal biomarkers with the 17-item Hamilton Depression Rating Scale guided brain structure-function fusion in 118 patients with depressive episodes and 60 healthy controls. Results show that reduced fractional amplitude of low frequency fluctuations in the prefrontal cortex, insula and hippocampus, linked with increased gray matter volume in anterior cingulate, medial temporal cortex, insula, thalamus, caudate and hippocampus represent electroconvulsive therapy responsive covarying functional and structural brain networks. In addition, relative to nonresponders, responder-specific electroconvulsive therapy related brain networks occur in frontal-limbic network and are associated with successful therapeutic outcomes. Finally, electroconvulsive therapy responsive brain networks were unrelated to verbal declarative memory. Using a data-driven, supervised-learning method, we demonstrated that electroconvulsive therapy produces a remodeling of brain functional and structural covariance that was unique to antidepressant symptom response, but not linked to memory impairment.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Trastorno Depresivo Resistente al Tratamiento/terapia , Terapia Electroconvulsiva , Red Nerviosa/diagnóstico por imagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Mapeo Encefálico , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Terapia Electroconvulsiva/efectos adversos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Imagen Multimodal , Escalas de Valoración Psiquiátrica , Resultado del Tratamiento , Adulto Joven
13.
Hum Brain Mapp ; 40(13): 3795-3809, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31099151

RESUMEN

There is growing evidence that rather than using a single brain imaging modality to study its association with physiological or symptomatic features, the field is paying more attention to fusion of multimodal information. However, most current multimodal fusion approaches that incorporate functional magnetic resonance imaging (fMRI) are restricted to second-level 3D features, rather than the original 4D fMRI data. This trade-off is that the valuable temporal information is not utilized during the fusion step. Here we are motivated to propose a novel approach called "parallel group ICA+ICA" that incorporates temporal fMRI information from group independent component analysis (GICA) into a parallel independent component analysis (ICA) framework, aiming to enable direct fusion of first-level fMRI features with other modalities (e.g., structural MRI), which thus can detect linked functional network variability and structural covariations. Simulation results show that the proposed method yields accurate intermodality linkage detection regardless of whether it is strong or weak. When applied to real data, we identified one pair of significantly associated fMRI-sMRI components that show group difference between schizophrenia and controls in both modalities, and this linkage can be replicated in an independent cohort. Finally, multiple cognitive domain scores can be predicted by the features identified in the linked component pair by our proposed method. We also show these multimodal brain features can predict multiple cognitive scores in an independent cohort. Overall, results demonstrate the ability of parallel GICA+ICA to estimate joint information from 4D and 3D data without discarding much of the available information up front, and the potential for using this approach to identify imaging biomarkers to study brain disorders.


Asunto(s)
Neuroimagen Funcional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Adulto , Ensayos Clínicos Fase III como Asunto , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Red Nerviosa/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Adulto Joven
14.
Brain ; 141(3): 916-926, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408968

RESUMEN

There is compelling evidence that epigenetic factors contribute to the manifestation of depression, in which microRNA132 (miR-132) is suggested to play a pivotal role in the pathogenesis and neuronal mechanisms underlying the symptoms of depression. Additionally, several depression-associated genes [MECP2, ARHGAP32 (p250GAP), CREB, and period genes] were experimentally validated as miR-132 targets. However, most studies regarding miR-132 in major depressive disorder are based on post-mortem, animal models or genetic comparisons. This work will be the first attempt to investigate how miR-132 dysregulation may impact covariation of multimodal brain imaging data in 81 unmedicated major depressive patients and 123 demographically-matched healthy controls, as well as in a medication-naïve subset of major depressive patients. MiR-132 values in blood (patients > controls) was used as a prior reference to guide fusion of three MRI features: fractional amplitude of low frequency fluctuations, grey matter volume, and fractional anisotropy. The multimodal components correlated with miR-132 also show significant group difference in loadings. Results indicate that (i) higher miR-132 levels in major depressive disorder are associated with both lower fractional amplitude of low frequency fluctuations and lower grey matter volume in fronto-limbic network; and (ii) the identified brain regions linked with increased miR-132 levels were also associated with poorer cognitive performance in attention and executive function. Using a data-driven, supervised-learning method, we determined that miR-132 dysregulation in major depressive disorder is associated with multi-facets of brain function and structure in fronto-limbic network (the key network for emotional regulation and memory), which deepens our understanding of how miR-132 dysregulation in major depressive disorders contribute to the loss of specific brain areas and is linked to relevant cognitive impairments.


Asunto(s)
Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/diagnóstico por imagen , MicroARNs/sangre , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Estudios de Casos y Controles , Cognición/fisiología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , MicroARNs/genética , Persona de Mediana Edad , Oxígeno/sangre , Adulto Joven
15.
Neuroimage ; 183: 366-374, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30125712

RESUMEN

Temperament consists of multi-dimensional traits that affect various domains of human life. Evidence has shown functional connectome-based predictive models are powerful predictors of cognitive abilities. Putatively, individuals' innate temperament traits may be predictable by unique patterns of brain functional connectivity (FC) as well. However, quantitative prediction for multiple temperament traits at the individual level has not yet been studied. Therefore, we were motivated to realize the individualized prediction of four temperament traits (novelty seeking [NS], harm avoidance [HA], reward dependence [RD] and persistence [PS]) using whole-brain FC. Specifically, a multivariate prediction framework integrating feature selection and sparse regression was applied to resting-state fMRI data from 360 college students, resulting in 4 connectome-based predictive models that enabled prediction of temperament scores for unseen subjects in cross-validation. More importantly, predictive models for HA and NS could be successfully generalized to two relevant personality traits for unseen individuals, i.e., neuroticism and extraversion, in an independent dataset. In four temperament trait predictions, brain connectivities that show top contributing power commonly concentrated on the hippocampus, prefrontal cortex, basal ganglia, amygdala, and cingulate gyrus. Finally, across independent datasets and multiple traits, we show person's temperament traits can be reliably predicted using functional connectivity strength within frontal-subcortical circuits, indicating that human social and behavioral performance can be characterized by specific brain connectivity profile.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Conducta Exploratoria/fisiología , Extraversión Psicológica , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Neuroticismo/fisiología , Recompensa , Temperamento/fisiología , Adolescente , Adulto , Reacción de Prevención/fisiología , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
17.
Nat Commun ; 15(1): 4411, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782943

RESUMEN

Cross-sectional studies have demonstrated strong associations between physical frailty and depression. However, the evidence from prospective studies is limited. Here, we analyze data of 352,277 participants from UK Biobank with 12.25-year follow-up. Compared with non-frail individuals, pre-frail and frail individuals have increased risk for incident depression independent of many putative confounds. Altogether, pre-frail and frail individuals account for 20.58% and 13.16% of depression cases by population attributable fraction analyses. Higher risks are observed in males and individuals younger than 65 years than their counterparts. Mendelian randomization analyses support a potential causal effect of frailty on depression. Associations are also observed between inflammatory markers, brain volumes, and incident depression. Moreover, these regional brain volumes and three inflammatory markers-C-reactive protein, neutrophils, and leukocytes-significantly mediate associations between frailty and depression. Given the scarcity of curative treatment for depression and the high disease burden, identifying potential modifiable risk factors of depression, such as frailty, is needed.


Asunto(s)
Encéfalo , Depresión , Fragilidad , Inflamación , Análisis de la Aleatorización Mendeliana , Humanos , Masculino , Femenino , Depresión/genética , Fragilidad/genética , Anciano , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Persona de Mediana Edad , Inflamación/genética , Factores de Riesgo , Reino Unido/epidemiología , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/genética , Estudios Transversales , Estudios Prospectivos , Adulto , Biomarcadores , Neutrófilos
18.
Biol Psychiatry ; 95(9): 828-838, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38151182

RESUMEN

BACKGROUND: Environmental exposures play a crucial role in shaping children's behavioral development. However, the mechanisms by which these exposures interact with brain functional connectivity and influence behavior remain unexplored. METHODS: We investigated the comprehensive environment-brain-behavior triple interactions through rigorous association, prediction, and mediation analyses, while adjusting for multiple confounders. Particularly, we examined the predictive power of brain functional network connectivity (FNC) and 41 environmental exposures for 23 behaviors related to cognitive ability and mental health in 7655 children selected from the Adolescent Brain Cognitive Development (ABCD) Study at both baseline and follow-up. RESULTS: FNC demonstrated more predictability for cognitive abilities than for mental health, with cross-validation from the UK Biobank study (N = 20,852), highlighting the importance of thalamus and hippocampus in longitudinal prediction, while FNC+environment demonstrated more predictive power than FNC in both cross-sectional and longitudinal prediction of all behaviors, especially for mental health (r = 0.32-0.63). We found that family and neighborhood exposures were common critical environmental influencers on cognitive ability and mental health, which can be mediated by FNC significantly. Healthy perinatal development was a unique protective factor for higher cognitive ability, whereas sleep problems, family conflicts, and adverse school environments specifically increased risk of poor mental health. CONCLUSIONS: This work revealed comprehensive environment-brain-behavior triple interactions based on the ABCD Study, identified cognitive control and default mode networks as the most predictive functional networks for a wide repertoire of behaviors, and underscored the long-lasting impact of critical environmental exposures on childhood development, in which sleep problems were the most prominent factors affecting mental health.


Asunto(s)
Cognición , Trastornos del Sueño-Vigilia , Niño , Adolescente , Humanos , Estudios Transversales , Salud Mental , Encéfalo , Imagen por Resonancia Magnética
19.
Transl Psychiatry ; 14(1): 326, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112461

RESUMEN

People affected by psychotic, depressive and developmental disorders are at a higher risk for alcohol and tobacco use. However, the further associations between alcohol/tobacco use and symptoms/cognition in these disorders remain unexplored. We identified multimodal brain networks involving alcohol use (n = 707) and tobacco use (n = 281) via supervised multimodal fusion and evaluated if these networks affected symptoms and cognition in people with psychotic (schizophrenia/schizoaffective disorder/bipolar, n = 178/134/143), depressive (major depressive disorder, n = 260) and developmental (autism spectrum disorder/attention deficit hyperactivity disorder, n = 421/346) disorders. Alcohol and tobacco use scores were used as references to guide functional and structural imaging fusion to identify alcohol/tobacco use associated multimodal patterns. Correlation analyses between the extracted brain features and symptoms or cognition were performed to evaluate the relationships between alcohol/tobacco use with symptoms/cognition in 6 psychiatric disorders. Results showed that (1) the default mode network (DMN) and salience network (SN) were associated with alcohol use, whereas the DMN and fronto-limbic network (FLN) were associated with tobacco use; (2) the DMN and fronto-basal ganglia (FBG) related to alcohol/tobacco use were correlated with symptom and cognition in psychosis; (3) the middle temporal cortex related to alcohol/tobacco use was associated with cognition in depression; (4) the DMN related to alcohol/tobacco use was related to symptom, whereas the SN and limbic system (LB) were related to cognition in developmental disorders. In summary, alcohol and tobacco use were associated with structural and functional abnormalities in DMN, SN and FLN and had significant associations with cognition and symptoms in psychotic, depressive and developmental disorders likely via different brain networks. Further understanding of these relationships may assist clinicians in the development of future approaches to improve symptoms and cognition among psychotic, depressive and developmental disorders.


Asunto(s)
Trastornos Psicóticos , Uso de Tabaco , Humanos , Femenino , Masculino , Adulto , Trastornos Psicóticos/diagnóstico por imagen , Uso de Tabaco/efectos adversos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto Joven , Trastorno Depresivo Mayor/diagnóstico por imagen , Persona de Mediana Edad , Imagen Multimodal , Consumo de Bebidas Alcohólicas/efectos adversos , Neuroimagen , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen
20.
Schizophr Res ; 264: 130-139, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128344

RESUMEN

BACKGROUND: Similarities among schizophrenia (SZ), schizoaffective disorder (SAD) and bipolar disorder (BP) including clinical phenotypes, brain alterations and risk genes, make it challenging to perform reliable separation among them. However, previous subtype identification that transcend traditional diagnostic boundaries were based on group-level neuroimaging features, ignoring individual-level inferences. METHODS: 455 psychoses (178 SZs, 134 SADs and 143 BPs), their first-degree relatives (N = 453) and healthy controls (HCs, N = 220) were collected from Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP I) consortium. Individualized covariance structural differential networks (ICSDNs) were constructed for each patient and multi-site clustering was used to identify psychosis subtypes. Group differences between subtypes in clinical phenotypes and voxel-wise fractional amplitude of low frequency fluctuation (fALFF) were calculated, as well as between the corresponding relatives. RESULTS: Two psychosis subtypes were identified with increased whole brain structural covariance, with decreased connectivity between amygdala-hippocampus and temporal-occipital cortex in subtype I (S-I) compared to subtype II (S-II), which was replicated under different clustering methods, number of edges and across datasets (B-SNIP II) and different brain atlases. S-I had higher emotional-related symptoms than S-II and showed significant fALFF decrease in temporal and occipital cortex, while S-II was more similar to HC. This pattern was consistently validated on relatives of S-I and S-II in both fALFF and clinical symptoms. CONCLUSIONS: These findings reconcile categorical and dimensional perspectives of psychosis neurobiological heterogeneity, indicating that relatives of S-I might have greater predisposition in developing psychosis, while relatives of S-II are more likely to be healthy. This study contributes to the development of neuroimaging informed diagnostic classifications within psychosis spectrum.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Humanos , Familia/psicología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/genética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Trastorno Bipolar/psicología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA