Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17001, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37947299

RESUMEN

With limited phosphorus (P) supplies, increasing P demand, and issues with P runoff and pollution, developing an ability to reuse the large amounts of residual P stored in agricultural soils is increasingly important. In this study, we investigated the potential for residual soil P to maintain crop yields while reducing P applications and losses in Canada. Using a P cycling model coupled with a soil P dynamics model, we analyzed soil P dynamics over 110 years across Canada's provinces. We found that using soil residual P may reduce mineral P demand as large as 132 Gg P year-1 (29%) in Canada, with the highest potential for reducing P applications in the Atlantic provinces, Quebec, Ontario, and British Columbia. Using residual soil P would result in a 21% increase in Canada's cropland P use efficiency. We expected that the Atlantic provinces and Quebec would have the greatest runoff P loss reduction with use of residual soil P, with the average P loss rate decreasing from 4.24 and 1.69 kg ha-1 to 3.45 and 1.38 kg ha-1 , respectively. Ontario, Manitoba, and British Columbia would experience relatively lower reductions in P loss through use of residual soil P, with the average runoff P loss rate decreasing from 0.44, 0.36, and 4.33 kg ha-1 to 0.19, 0.26, and 4.14 kg ha-1 , respectively. Our study highlights the importance of considering residual soil P as a valuable resource and its potential for reducing P pollution.


Asunto(s)
Fósforo , Suelo , Fósforo/análisis , Agricultura , Minerales , Ontario , Fertilizantes , Movimientos del Agua
2.
J Environ Manage ; 370: 122519, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39332291

RESUMEN

The stimulating impact of crop residue return on greenhouse gas (GHG) emissions from paddy fields have been widely accepted, while the influence of site environmental and human factors on the simulating degree remains unclear. Here, we performed a meta-analysis to assess the GHG emissions affected by residue return, and its mitigation potential combined with key factors in paddy fields. Drawing upon 1047 observation sets of CH4 and N2O emissions from 155 peer-reviewed publications we found that residue return to paddy fields caused an average increase of 73% CH4 emissions and 14% in N2O emissions. Utilizing meta-analytical models, we identified pH as the most significant driver modulating GHG emissions, followed by soil organic matter (SOC) and total nitrogen. In alkaline soils, combining straw return with intermittent irrigation (285.2%) or mid-season drainage (118.9%) significantly reduced CH4 emissions compared to continuous flooding (1201.9%). Additionally, pairing straw return with higher nitrogen inputs (above 150 kg N ha-1) improved soil N2O uptake by -11.5%. In acid and neutral soils, straw carbonization achieved soil CH4 negative emissions (from -2.9% to -39.3%), but the long-term effects remained unclear. Reduced drainage frequency mitigates N2O emissions but may increase CH4 emissions. To efficiently mitigate GHG emissions, we proposed low-carbon schemes for acid or neutral soils based on specific SOC content: For soils with SOC content <10 g kg-1, prioritize nitrogen input control with rates not exceeding 174 kg N ha-1. For soils with SOC content >10 g kg-1, prioritize adjusting the type of straw. Our study underscores the significance of site-specific factors in modulating GHG emissions. Efficient GHG mitigation can be achieved by combining residue return with other agronomic measures tailored to different soil conditions.

3.
Pak J Med Sci ; 40(8): 1791-1796, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281243

RESUMEN

Objective: To compare the clinical effects of applying a 3D-printed ACT titanium trabecular intervertebral fusion cage and a Polyetheretherketone (PEEK) cage in posterior lumbar interbody fusion (PLIF). Methods: This was a clinical comparative study. Forty patients with degenerative lumbar diseases admitted at The Second People's Hospital of Dalian from January 2020 to December 2021 were selected and divided into an observation group (3D cage) and a control group (PEEK cage) using the random number table method, with each group of 20 cases. The visual analogue scale (VAS) scores, Japanese Orthopaedic Association (JOA) scores, Cobb angles at fusion segments, intervertebral height and intervertebral fusion situations of the patients between the groups were compared. Results: No significant differences were found in their operation time, intraoperative blood losses and operation related complications(p>0.05). In terms of postoperative VAS and JOA scores in both groups, they are all significantly improved compared with those before the operation, and their differences are also statistically significant(p<0.05). However, no statistical significance exists in inter-group differences(p>0.05). Postoperative Cobb angles and intervertebral height of patients in both groups are considerably bettered compared with those before the operation. Their differences show statistical significance(p<0.05), while inter-group differences are proved to be not statistically significant(p>0.05). Conclusions: Applying a 3D-printed ACT titanium trabecular intervertebral fusion cage or PEEK cage in PLIF has the potential to improve clinical symptoms of patients with degenerative lumbar diseases, and restore the Cobb angle and intervertebral height. 3D-printed ACT titanium trabecular intervertebral fusion cage can accelerate intervertebral fusion without increasing operation related complications.

4.
J Environ Manage ; 285: 112097, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33578214

RESUMEN

Agricultural production is a major source of carbon dioxide (CO2) and nitrous oxide (N2O) globally. The effects of conservation practices on soil CO2 and N2O emissions remain a high degree of uncertainty. In this study, soil CO2 and N2O emissions under different residue and tillage practices in an irrigated, continuous corn system, were investigated using the Root Zone Water Quality Model (RZWQM2). Combinations of no/high stover removal (NR and HR, respectively) and no-till/conventional tillage (NT and CT, respectively) field experiments were tested over the four crop-years (Apr. 2011-Apr. 2015). The model was calibrated using the NRCT, and validated with other treatments. The simulation results showed that soil volumetric water content (VWC) in the NR treatments (i.e., NRCT and NRNT) was 1.3%-1.9% higher than that in the HR treatments (i.e., HRCT and HRNT) averaged across the four years. A higher amount of CO2 and N2O emissions were simulated in the NRCT across the four years (annual average: 7034 kg C/ha/yr for CO2 and 3.8 kg N/ha/yr for N2O), and lower emissions were in the HRNT (annual average: 6329 kg C/ha/yr and 3.7 kg N/ha/yr for N2O). A long-term simulation (2001-2015) suggested that the CO2 and N2O emissions were closely correlated with the stover removal degree (SRD), tillage, VWC, soil temperature (ST), years in management (Y), and fertilizer application. Stover and tillage practices had cumulative effects on CO2 emissions. The simulated annual CO2 emissions in 1st year from NRCT, NRNT, and HRCT were 7.8%, 0.0%, and 7.7% higher than that from HRNT, respectively; then the emissions in 15th year were 63.6%, 47.7%, and 29.1% higher, respectively. Meanwhile, there were no cumulative effects on N2O emissions. The results also demonstrated that the RZWQM2 is a promising tool for evaluating the long-term effects of CO2 and N2O emissions on different conservation practices.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Dióxido de Carbono/análisis , Fertilizantes/análisis , Óxido Nitroso/análisis , Suelo , Calidad del Agua , Zea mays
5.
J Environ Qual ; 47(2): 203-211, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29634805

RESUMEN

Modeling soil phosphorus (P) losses by surface and subsurface flow pathways is essential in developing successful strategies for P pollution control. We used the ICECREAM model to simultaneously simulate P losses in surface and subsurface flow, as well as to assess effectiveness of field practices in reducing P losses. Monitoring data from a mineral-P-fertilized clay loam field in southwestern Ontario, Canada, were used for calibration and validation. After careful adjustment of model parameters, ICECREAM was shown to satisfactorily simulate all major processes of surface and subsurface P losses. When the calibrated model was used to assess tillage and fertilizer management scenarios, results point to a 10% reduction in total P losses by shifting autumn tillage to spring, and a 25.4% reduction in total P losses by injecting fertilizer rather than broadcasting. Although the ICECREAM model was effective in simulating surface and subsurface P losses when thoroughly calibrated, further testing is needed to confirm these results with manure P application. As illustrated here, successful use of simulation models requires careful verification of model routines and comprehensive calibration to ensure that site-specific processes are accurately represented.


Asunto(s)
Fósforo/análisis , Contaminantes del Agua/análisis , Agricultura , Canadá , Fertilizantes , Estiércol , Movimientos del Agua
6.
J Environ Sci (China) ; 73: 162-176, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30290865

RESUMEN

The feasibility of using two types of biochars to reduce steroid hormone pollution from poultry and swine manure application on agricultural land was evaluated. The sorption affinity and desorption resistance of softwood and hardwood biochars were also determined for two estrogen hormones, 17ß-estradiol (E2) and its primary metabolite estrone (E1). The softwood and hardwood biochars demonstrated high retention capacity for both estrogens. The effective distribution coefficient (Kdeff) of soil-softwood-derived biochar (SBS450) was significantly higher than soil-hardwood-derived biochar (SBH750), indicating the stronger sorption affinity of SBS450 for estrogens. To validate the laboratory results, a field lysimeter experiment was conducted to study the fate and transport of E2 and E1 in soil and leachate in the presence of 1% softwood-biochar (BS450) in topsoil and to compare it with soil without any amendments. The spatio-temporal distribution of both estrogens was monitored at four depths over a 46-day period. The lysimeters, in which the surface layer of soil was amended with biochar, retained significantly higher concentrations of both estrogen hormones. Although they leached through the soil and were detected in leachates, collected at 1.0m depth, the concentrations were significantly lower in the leachate collected from biochar-amended lysimeters. The result confirmed the efficacy of biochar amendment as a remediation technique to alleviate the manure-borne hormonal pollution of groundwater.


Asunto(s)
Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Estrógenos/química , Contaminantes del Suelo/química , Suelo/química , Agricultura , Estrógenos/análisis , Contaminantes del Suelo/análisis
7.
J Environ Manage ; 181: 16-25, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27294676

RESUMEN

Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation groundwater can be best utilized without corn yield loss when the total irrigation was reduced from the current 750 mm to 491 mm. This reduced irrigation rate facilitated the use of approximately 42 kg N ha(-1) yr(-1) of nitrate from groundwater, which would gradually improve the groundwater quality. Future field studies on nitrate leaching in this area are suggested to investigate water and N dynamics under irrigation rates near 490 mm per season.


Asunto(s)
Riego Agrícola , Nitratos/química , Movimientos del Agua , Contaminantes Químicos del Agua/química , China , Clima Desértico , Humanos , Modelos Químicos
9.
Plants (Basel) ; 13(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38794400

RESUMEN

Southwestern China is receiving excessive chemical fertilizers to meet the challenges of continuous cropping. These practices are deteriorating the soil environment and affecting tobacco (Nicotiana tabacum L.) yield and quality adversely. A novel microbially enriched biochar-based fertilizer was synthesized using effective microorganisms, tobacco stalk biochar and basal fertilizer. A field-scale study was conducted to evaluate the yield response of tobacco grown on degraded soil amended with our novel biochar-based microbial fertilizer (BF). Four treatments of BF (0%, 1.5%, 2.5% and 5%) were applied in the contaminated field to grow tobacco. The application of BF1.5, BF2.5 and BF5.0 increased the available water contents by 9.47%, 1.18% and 2.19% compared to that with BF0 respectively. Maximum growth of tobacco in terms of plant height and leaf area was recorded for BF1.5 compared to BF0. BF1.5, BF2.5 and BF5.0 increased SPAD by 13.18-40.53%, net photosynthetic rate by 5.44-60.42%, stomatal conductance by 8.33-44.44%, instantaneous water use efficiency by 55.41-93.24% and intrinsic water use efficiency by 0.09-24.11%, while they decreased the intercellular CO2 concentration and transpiration rate by 3.85-6.84% and 0.29-47.18% relative to BF0, respectively (p < 0.05). The maximum increase in tobacco yield was recorded with BF1.5 (23.81%) compared to that with BF0. The present study concludes that the application of BF1.5 improves and restores the degraded soil by improving the hydraulic conductivity and by increasing the tobacco yield.

10.
Plants (Basel) ; 13(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38498433

RESUMEN

Significant research has been conducted on the effects of fertilizers or agents on the sustainable development of agriculture in salinization areas. By contrast, limited consideration has been given to the interactive effects of microbial fertilizer (MF) and salinity on hydraulic properties in secondary salinization soil (SS) and coastal saline soil (CS). An incubation experiment was conducted to investigate the effects of saline soil types, salinity levels (non-saline, low-salinity, and high-salinity soils), and MF amounts (32.89 g kg-1 and 0 g kg-1) on soil hydraulic properties. Applied MF improved soil water holding capacity in each saline soil compared with that in CK, and SS was higher than CS. Applied MF increased saturated moisture, field capacity, capillary fracture moisture, the wilting coefficient, and the hygroscopic coefficient by 0.02-18.91% in SS, while it was increased by 11.62-181.88% in CS. It increased soil water supply capacity in SS (except for high-salinity soil) and CS by 0.02-14.53% and 0.04-2.34%, respectively, compared with that in CK. Soil available, readily available, and unavailable water were positively correlated with MF, while soil gravity and readily available and unavailable water were positively correlated with salinity in SS. Therefore, a potential fertilization program with MF should be developed to increase hydraulic properties or mitigate the adverse effects of salinity on plants in similar SS or CS areas.

11.
Front Cell Infect Microbiol ; 14: 1367325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912210

RESUMEN

Introduction: Emerging evidence suggests that the gut microbiota is closely associated with bone homeostasis. However, little is known about the relationships among the bone mineral density (BMD) index, bone turnover markers, and the gut microbiota and its metabolites in postmenopausal women. Methods: In this study, to understand gut microbiota signatures and serum metabolite changes in postmenopausal women with reduced BMD, postmenopausal individuals with normal or reduced BMD were recruited and divided into normal and OS groups. Feces and serum samples were collected for 16S rRNA gene sequencing, liquid chromatography coupled with mass spectrometry (LC-MS)-based metabolomics and integrated analysis. Results: The results demonstrated that bacterial richness and diversity were greater in the OS group than in the normal group. Additionally, distinguishing bacteria were found among the two groups and were closely associated with the BMD index and bone turnover markers. Metabolomic analysis revealed that the expression of serum metabolites, such as etiocholanolone, testosterone sulfate, and indole-3-pyruvic acid, and the corresponding signaling pathways, especially those involved in tryptophan metabolism, fatty acid degradation and steroid hormone biosynthesis, also changed significantly. Correlation analysis revealed positive associations between normal group-enriched Bacteroides abundance and normal group-enriched etiocholanolone and testosterone sulfate abundances; in particular, Bacteroides correlated positively with BMD. Importantly, the tryptophan-indole metabolism pathway was uniquely metabolized by the gut bacteria-derived tnaA gene, the predicted abundance of which was significantly greater in the normal group than in the control group, and the abundance of Bacteroides was strongly correlated with the tnaA gene. Discussion: Our results indicated a clear difference in the gut microbiota and serum metabolites of postmenopausal women. Specifically altered bacteria and derived metabolites were closely associated with the BMD index and bone turnover markers, indicating the potential of the gut microbiota and serum metabolites as modifiable factors and therapeutic targets for preventing osteoporosis.


Asunto(s)
Bacterias , Densidad Ósea , Heces , Microbioma Gastrointestinal , Metabolómica , Posmenopausia , ARN Ribosómico 16S , Humanos , Femenino , Posmenopausia/sangre , Heces/microbiología , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Anciano , Metaboloma , Biomarcadores/sangre , Cromatografía Liquida , Espectrometría de Masas , Osteoporosis Posmenopáusica/sangre , Osteoporosis Posmenopáusica/microbiología , Remodelación Ósea
12.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131391

RESUMEN

Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Advances in targeted therapy have shown promise for treating diseases where conventional therapies have been ineffective and lymphatic vessels have recently emerged as a new therapeutic target. Lipid nanoparticles (LNPs) have emerged as a promising strategy for tissue specific delivery of nucleic acids. Currently, there are no approaches to target LNPs to lymphatic endothelial cells, although it is well established that intradermal (ID) injection of nanoparticles will drain to lymphatics with remarkable efficiency. To design an LNP that would effectively deliver mRNA to LEC after ID delivery, we screened a library of 150 LNPs loaded with a reporter mRNA, for both self-assembly and delivery in vivo to lymphatic endothelial cells (LECs). We identified and validated several LNP formulations optimized for high LEC uptake when administered ID and compared their efficacy for delivery of functional mRNA with that of free mRNA and mRNA delivered with a commercially available MC3-based LNP (Onpattro™). The lead LEC-specific LNP was then loaded with VEGFC mRNA to test the therapeutic advantage of the LEC-specific LNP (namely, LNP7) for treating a mouse tail lymphatic injury model. A single dose of VEGFC mRNA delivered via LNP7 resulted in enhanced LEC proliferation at the site of injury, and an increase in lymphatic function up to 14-days post-surgery. Our results suggest a therapeutic potential of VEGFC mRNA lymphatic-specific targeted delivery in alleviating lymphatic dysfunction observed during lymphatic injury and could provide a promising approach for targeted, transient lymphangiogenic therapy.

13.
J Orthop Translat ; 48: 163-175, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39257437

RESUMEN

Background: In the recent decade, there has been substantial progress in the technologies and philosophies associated with diagnosing and treating anterior cruciate ligament (ACL) injuries in China. The therapeutic efficacy of ACL reconstruction in re-establishing the stability of the knee joint has garnered widespread acknowledgment. However, the path toward standardizing diagnostic and treatment protocols remains to be further developed and refined. Objective: In this context, the Chinese Association of Orthopaedic Surgeons (CAOS) and the Chinese Society of Sports Medicine (CSSM) collaboratively developed an expert consensus on diagnosing and treating ACL injury, aiming to enhance medical quality through refining professional standards. Methods: The consensus drafting team invited experts across the Greater China region, including the mainland, Hong Kong, Macau, and Taiwan, to formulate and review the consensus using a modified Delphi method as a standardization approach. As members of the CSSM Lower Limb Study Group and the CAOS Arthroscopy and Sports Medicine Study Group, invited experts concentrated on two pivotal issues: "Graft Selection" and "Clinical Outcome Evaluation" during the second part of the consensus development. Results: This focused discussion ultimately led to a strong consensus on nine specific consensus terms. Conclusion: The consensus clearly states that ACL reconstruction has no definitive "gold standard" graft choice. Autografts have advantages in healing capability but are limited in availability and have potential donor site morbidities; allografts reduce surgical trauma but incur additional costs, and there are concerns about slow healing, quality control issues, and a higher failure rate in young athletes; synthetic ligaments allow for early rehabilitation and fast return to sport, but the surgery is technically demanding and incurs additional costs. When choosing a graft, one should comprehensively consider the graft's characteristics, the doctor's technical ability, and the patient's needs. When evaluating clinical outcomes, it is essential to ensure an adequate sample size and follow-up rate, and the research should include patient subjective scoring, joint function and stability, complications, surgical failure, and the return to sport results. Medium and long-term follow-ups should not overlook the assessment of knee osteoarthritis.

14.
Sci Total Environ ; 854: 158822, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36116657

RESUMEN

Optimizing irrigation and nitrogen (N) fertilizer applications is essential to ensure crop yields and lower environmental risks under climate change. The DeNitrification-DeComposition (DNDC) model was employed to investigate the impacts of irrigation regime (RF, rainfed; MI, minimum irrigation; CI, critical irrigation; FI, full irrigation) and N fertilizer rate (N60, N90, N120, N150, N180, N210, N240, N270, and N300 kg ha-1) on yield and nitrous oxide (N2O) emissions from winter wheat growing season under different temperature rise levels (+0, +0.5, +1.0, +1.5, and +2.0 °C scenarios) and precipitation year types (wet, normal, and dry seasons) in the North China Plain. Model evaluations demonstrated that simulated soil temperature, soil moisture, daily N2O flux, yield, and cumulative N2O emissions were generally in close agreement with measurements from field experiment over three growing seasons. By adopting simulation scenarios analysis, the model was then used to explore the effects of irrigation and N fertilizer inputs to balance yield and N2O emissions from winter wheat growing season. Based on reduced water and fertilizer inputs and N2O emissions with little yield penalty, recommended management practices included application of MI-N150 in wet season, CI-N120 in both normal and dry seasons, and CI-N150 for +0 to +2.0 °C scenarios. Recommended practices in different precipitation year types reduced irrigation amount by 75-150 mm, N rate by 75-105 kg N ha-1, yield by 0.16-0.86 t ha-1, cumulative N2O emissions by 0.13-0.64 kg ha-1, and yield-scaled N2O emissions by 15.5-85.0 mg kg-1 compared with current practices. The corresponding metrics for different elevated temperature levels decreased by 75 mm, 75 kg N ha-1, 0.09-0.50 t ha-1, 0.12-0.52 kg ha-1, and 13.7-72.3 mg kg-1, respectively. The proposed management practices can help to maintain high agronomic productivity and alleviate environmental pollution from agricultural ecosystems, thereby providing an important basis for mitigation strategies to adapt to climate change.

15.
J Hazard Mater ; 454: 131477, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37104954

RESUMEN

Biodegradable mulches (BMs) can be tilled into soils to mitigate disposal and environmental problems. However, the content of biodegradable microplastics (BMPs) would increase with the addition of biodegradable macroplastics (BMaPs). The fragmented particles have a strong affinity to soil pollutants, having the potential to transfer via the terrestrial food web in an agroecosystem. Based on the spectral analysis and particle size analysis, this study explored the physicochemical characteristics of weathered BMaPs and BMP-derived dissolved organic matter (DOMBMP). Ultraviolet (UV) irradiation reduced the mechanical strength of BMaPs and induced oxygenated functional groups, thus increasing surface roughness and hydrophilicity. This promoted the adsorption of aromatic compounds and heavy metals from soils to BMPs. After entering the water environment, the pH of the solution with DOMBMP decreased, whereas the concentration of dissolved organic carbon (DOC) increased. Compared with paper mulch, bioplastic mulch contributed a higher amount of DOMBMP, such as aromatic structure-containing chemicals and carboxylic acids, to the water environment but released fewer and smaller plastic particles. The findings from this study can help manage environmental risks and determine disposal strategies after the use of mulching.


Asunto(s)
Plásticos , Suelo , Tiempo (Meteorología) , Microplásticos , Materia Orgánica Disuelta , Agua
16.
J Environ Qual ; 41(1): 289-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22218197

RESUMEN

Computer models have been widely used to evaluate the impact of agronomic management on nitrogen (N) dynamics in subsurface drained fields. However, they have not been evaluated as to their ability to capture the variability of nitrate-nitrogen (NO(3)-N) concentration in subsurface drainage at a wide range of N application rates due to possible errors in the simulation of other system components. The objective of this study was to evaluate the performance of Root Zone Water Quality Model2 (RZWQM2) in simulating the response of NO(3)-N concentration in subsurface drainage to N application rate. A 16-yr field study conducted in Iowa at nine N rates (0-252 kg N ha(-1)) from 1989 to 2004 was used to evaluate the model, based on a previous calibration with data from 2005 to 2009 at this site. The results showed that the RZWQM2 model performed "satisfactorily" in simulating the response of NO(3)-N concentration in subsurface drainage to N fertilizer rate with 0.76, 0.49, and -3% for the Nash-Sutcliffe efficiency, the ratio of the root mean square error to the standard deviation, and percent bias, respectively. The simulation also identified that the N application rate required to achieve the maximum contaminant level for the annual average NO(3)-N concentration was similar to field-observed data. This study supports the use of RZWQM2 to predict NO(3)-N concentration in subsurface drainage at various N application rates once it is calibrated for the local condition.


Asunto(s)
Simulación por Computador , Modelos Teóricos , Nitratos/química , Nitrógeno/química , Agricultura , Monitoreo del Ambiente , Fertilizantes , Contaminantes Químicos del Agua
17.
Front Plant Sci ; 13: 1036814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589049

RESUMEN

Combating desertification is vital for arresting land degradation and ensuring sustainable development of the global ecological environment. This study has analyzed the current desertification status and determined its control needs based on the difference between potential normalized difference vegetation index (PNDVI) and actual normalized difference vegetation index (ANDVI) in the Hotan desertoasis. The MaxEnt model, combined with the distribution point data of natural vegetation with long-term stable normalized difference vegetation index (NDVI) and 24 environmental factors was used to predict the PNDVI spatial distribution of different vegetation coverage grades and compared it with ANDVI. Excluding the areas of intense human activity such as arable land, the simulation results show that PNDVI with high, medium, and low vegetation cover was mainly distributed in the southwest and southeast of Hotan Oasis, in the midstream and downstream of Kalakash River and Yulong Kashi River, and the desert or Gobi area outside the oasis, respectively. The distribution of PNDVI with high, medium, and low vegetation cover accounted for 6.80%, 7.26%, and 9.17% of Hotan oasis, respectively. The comparison between ANDVI and PNDVI shows that 18.04% (ANDVI < PNDVI, about 3900 km2) of the study area is still suffering from desertification, which is mainly distributed in the desert-oasis ecotone in Hotan. The findings of this study implied that PNDVI could be used to assess the desertification status and endorsement of desertification control measures in vulnerable ecosystems. Hence, PNDVI can strengthen the desertification combating efforts at regional and global scales and may serve as a reference point for the policymakers and scientific community towards sustainable land development.

18.
J Environ Qual ; 40(5): 1578-85, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21869520

RESUMEN

Nitrate-nitrogen (NO3-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO3-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO3-N loss was significantly lower for kC and PF than C and S treatments (p < 0.05); rye cover crop did not reduce NO3-N loss, but NO3-N concentration was significantly reduced in rC during March to June and in rS during July to November (p < 0.05). Moreover, the increase of soil NO3-N from early to late spring in rS was significantly lower than the S treatment (p < 0.05). This study suggests that kC and PF are effective in reducing NO3-N loss, but these systems could lead to concerns relative to grain yield loss and change in farming practices. Management strategies for kC need further study to achieve reasonable corn yield. The effectiveness of rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage.


Asunto(s)
Productos Agrícolas , Nitratos/química , Nitrógeno/química , Agua/química , Biomasa , Suelo
19.
J Environ Qual ; 49(5): 1203-1224, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33016450

RESUMEN

Phosphorus (P) losses from nonpoint sources into surface water resources through surface runoff and tile drainage play a significant role in eutrophication. Accordingly, the number of studies involving the modeling of agricultural P losses, the uncertainties of such models, and the best management practices (BMPs) supported by the modeling of hypothetical P loss reduction scenarios has increased significantly around the world. Many improvements have been made to these models: separate manure P pools, variable source areas allowing the determination of critical source areas of P loss, analyses of modeling uncertainties, and understanding of legacy P. However, several elements are still missing or have yet to be sufficiently addressed: the incorporation of preferential flow into models, the modification of P sorption-desorption processes considering recent research data (e.g., pedotransfer functions for labile, active, or stable P, along with P sorption coefficients), BMP parameterization, and scale-up issues, as well as stakeholder-scientist and experimentalist-modeler interactions. The accuracy of P loss modeling can be improved by (a) incorporating dynamic P sorption-desorption processes and new P subroutines for direct P loss from manure, fertilizer, and dung, (b) modeling preferential flow, connectivity between field and adjacent water bodies, and P in-stream processes, (c) including an assessment of model uncertainty, (d) integrating field and watershed models for BMP calibration and scaling field results up to larger areas, and (e) building a holistic interaction between stakeholders, experimentalists, and modelers.


Asunto(s)
Agricultura , Fósforo , Eutrofización , Fertilizantes , Estiércol
20.
Sci Total Environ ; 705: 135969, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31838422

RESUMEN

Future climate change-driven alterations in precipitation patterns, increases in temperature, and rises in atmospheric carbon dioxide concentration ([CO2]atm) are expected to alter agricultural productivity and environmental quality, while high latitude countries like Canada are likely to face more challenges from global climate change. However, potential climate change impact on GHG emissions from tile-drained fields is poorly documented. Accordingly, climate change impacts on GHG emissions, N losses to drainage and crop production in a subsurface-drained field in Southern Quebec, Canada were assessed using calibrated and validated RZWQM2 model. The RZWQM2 model was run for a historical period (1971-2000) and for a future period (2038 to 2070) using data generated from 11 different GCM-RCMs (global climate models coupled with regional climate models). Under the projected warmer and higher rainfall conditions mean drainage flow was predicted to increase by 17%, and the N losses through subsurface drains increase by 47%. Despite the negative effect of warming temperature on crop yield, soybean yield was predicted to increase by 31% due to increased photosynthesis rates and improved crop water use efficiency (WUE) under elevated [CO2]atm, while corn yield was reduced by 7% even with elevated [CO2]atm because of a shorter life cycle from seedling to maturity resulted from higher temperature. The N2O emissions would be enhanced by 21% due to greater denitrification and mineralization, while CO2 emissions would increase by 16% because of more crop biomass accumulation, higher crop residue decomposition, and greater soil microbial activities. Soil organic carbon storage was predicted to decrease 22% faster in the future, which would result in higher global warming potential in turn. This study demonstrates the potential of exacerbating GHG emissions and water quality problems and reduced corn yield under climate change impact in subsurface drained fields in southern Quebec.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA