Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Imaging ; 102: 53-59, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37549563

RESUMEN

PURPOSE: Brain and spinal cord tumors are the second most common cancer in children and account for one out of four cancers diagnosed. However, the long acquisition times associated with acquiring both data types prohibit using quantitative MR (qMR) in pediatric imaging protocols. This study aims to demonstrate the tailored magnetic resonance fingerprinting's (TMRF) ability to simultaneously provide quantitative maps (T1, T2) and multi-contrast qualitative images (T1 weighted, T1 FLAIR, T2 weighted) rapidly in pediatric brain tumor patients. METHODS: In this work, we imaged five pediatric patients with brain tumors (resected/residual) using TMRF at 3 T. We compared the TMRF-derived T2 weighted images with those from the vendor-supplied sequence (as the gold standard, GS) for healthy and pathological tissue signal intensities. The relaxometric maps from TMRF were subjected to a region of interest (ROI) analysis to differentiate between healthy and pathological tissues. We performed the Wilcoxon rank sum test to check for significant differences between the two tissue types. RESULTS: We found significant differences (p < 0.05) in both T1 and T2 ROI values between the two tissue types. A strong correlation was found between the TMRF-based T2 weighted and GS signal intensities for the healthy (correlation coefficient, r = 0.99) and pathological tissues (r = 0.88). CONCLUSION: The TMRF implementation provides the two relaxometric maps and can potentially save ~2 min if it replaces the T2-weighted imaging in the current protocol.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Niño , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Espectroscopía de Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estadísticas no Paramétricas
2.
Magn Reson Imaging ; 99: 81-90, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36764630

RESUMEN

Neuroimaging of certain pathologies requires both multi-parametric qualitative and quantitative imaging. The role of the quantitative MRI (qMRI) is well accepted but suffers from long acquisition times leading to patient discomfort, especially in geriatric and pediatric patients. Previous studies show that synthetic MRI can be used in order to reduce the scan time and provide qMRI as well as multi-contrast data. However, this approach suffers from artifacts such as partial volume and flow. In order to increase the scan efficiency (the number of contrasts and quantitative maps acquired per unit time), we designed, simulated, and demonstrated rapid, simultaneous, multi-contrast qualitative (T1 weighted, T1 fluid attenuated inversion recovery (FLAIR), T2 weighted, water, and fat), and quantitative imaging (T1 and T2 maps) through the approach of tailored MR fingerprinting (TMRF) to cover whole-brain in approximately four minutes. We performed TMRF on in vivo four healthy human brains and in vitro ISMRM/NIST phantom and compared with vendor supplied gold standard (GS) and MRF sequences. All scans were performed on a 3 T GE Premier system and images were reconstructed offline using MATLAB. The reconstructed qualitative images were then subjected to custom DL denoising and gradient anisotropic diffusion denoising. The quantitative tissue parametric maps were reconstructed using a dense neural network to gain computational speed compared to dictionary matching. The grey matter and white matter tissues in qualitative and quantitative data for the in vivo datasets were segmented semi-automatically. The SNR and mean contrasts were plotted and compared across all three methods. The GS images show better SNR in all four subjects compared to MRF and TMRF (GS > TMRF>MRF). The T1 and T2 values of MRF are relatively overestimated as compared to GS and TMRF. The scan efficiency for TMRF is 1.72 min-1 which is higher compared to GS (0.32 min-1) and MRF (0.90 min-1).


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Niño , Anciano , Imagen por Resonancia Magnética/métodos , Neuroimagen , Fantasmas de Imagen , Espectroscopía de Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos
3.
Phys Med Biol ; 68(17)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37489867

RESUMEN

The purpose of this study is to demonstrate the first work ofT1-based magnetic resonance thermometry using magnetic resonance fingerprinting (dubbed MRFT). We compared temperature estimation of MRFT with proton resonance frequency shift (PRFS) thermometry onex vivobovine muscle. We demonstrated MRFT's feasibility in predicting temperature onex vivobovine muscles with deep brain stimulation (DBS) lead.B0maps generated from MRFT were compared with gold standardB0maps near the DBS lead. MRFT and PRFS estimated temperatures were compared in the presence of motion. All experiments were performed on a 3 Tesla whole-body GE Premier system with a 21-channel receive head coil (GE Healthcare, Milwaukee, WI). Four fluoroptic probes were used to measure the temperature at the center of a cold muscle (probe 1), the room temperature water bottle (probe 2), and the center and periphery of the heated muscle (probes 3 and 4). We selected regions of interest (ROIs) around the location of the probes and used simple linear regression to generate the temperature sensitivity calibration equations that convertT1maps and Δsmaps to temperature maps. We then repeated the same setup and compared MRFT and PRFS thermometry temperature estimation with gold standard probe measurements. For the MRFT experiment on DBS lead, we taped the probe to the tip of the DBS lead and used a turbo spin echo sequence to induce heating near the lead. We selected ROIs around the tip of the lead to compare MRFT temperature estimation with probe measurements and compared with PRFS temperature estimation. Vendor-suppliedB0mapping sequence was acquired to compare with MRFT-generatedB0maps. We found strong linear relationships (R2> 0.958) betweenT1and temperature and Δsand temperatures in our temperature sensitivity calibration experiment. MRFT and PRFS thermometry both accurately predict temperature (RMSE < 1.55 °C) compared to probe measurements. MRFT estimated temperature near DBS lead has a similar trend as the probe temperature. BothB0maps show inhomogeneities around the lead. MRFT estimated temperature is less sensitive to motion.


Asunto(s)
Plomo , Termometría , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Termometría/métodos , Temperatura , Fantasmas de Imagen
4.
Front Neuroimaging ; 2: 1072759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554641

RESUMEN

Magnetic Resonance Imaging (MR Imaging) is routinely employed in diagnosing Alzheimer's Disease (AD), which accounts for up to 60-80% of dementia cases. However, it is time-consuming, and protocol optimization to accelerate MR Imaging requires local expertise since each pulse sequence involves multiple configurable parameters that need optimization for contrast, acquisition time, and signal-to-noise ratio (SNR). The lack of this expertise contributes to the highly inefficient utilization of MRI services diminishing their clinical value. In this work, we extend our previous effort and demonstrate accelerated MRI via intelligent protocolling of the modified brain screen protocol, referred to as the Gold Standard (GS) protocol. We leverage deep learning-based contrast-specific image-denoising to improve the image quality of data acquired using the accelerated protocol. Since the SNR of MR acquisitions depends on the volume of the object being imaged, we demonstrate subject-specific (SS) image-denoising. The accelerated protocol resulted in a 1.94 × gain in imaging throughput. This translated to a 72.51% increase in MR Value-defined in this work as the ratio of the sum of median object-masked local SNR values across all contrasts to the protocol's acquisition duration. We also computed PSNR, local SNR, MS-SSIM, and variance of the Laplacian values for image quality evaluation on 25 retrospective datasets. The minimum/maximum PSNR gains (measured in dB) were 1.18/11.68 and 1.04/13.15, from the baseline and SS image-denoising models, respectively. MS-SSIM gains were: 0.003/0.065 and 0.01/0.066; variance of the Laplacian (lower is better): 0.104/-0.135 and 0.13/-0.143. The GS protocol constitutes 44.44% of the comprehensive AD imaging protocol defined by the European Prevention of Alzheimer's Disease project. Therefore, we also demonstrate the potential for AD-imaging via automated volumetry of relevant brain anatomies. We performed statistical analysis on these volumetric measurements of the hippocampus and amygdala from the GS and accelerated protocols, and found that 27 locations were in excellent agreement. In conclusion, accelerated brain imaging with the potential for AD imaging was demonstrated, and image quality was recovered post-acquisition using DL-based image denoising models.

5.
Med Phys ; 49(3): 1673-1685, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35084744

RESUMEN

PURPOSE: The goals of this study include: (a) generating tailored magnetic resonance fingerprinting (TMRF) based non-synthetic imaging; (b) assessing the repeatability of TMRF and deep learning-based mapping of in vitro ISMRM/NIST phantom and in vivo brain data of healthy human subjects. METHODS: We have acquired qualitative images obtained from the vendor-supplied gold standard (GS), MRF (synthetic), and TMRF (non-synthetic) on one representative healthy human brain. We also acquired 30 datasets on the ISMRM/NIST phantom for the in vitro repeatability study on a GE Discovery 3T MR750w scanner using the TMRF sequence. We compared T1 and T2 maps generated from 30 ISMRM/NIST phantom datasets to the spin-echo (SE) based GS method as part of the in vitro repeatability study. R-squared coefficient of determination in a simple linear regression and Bland-Altman analysis were computed for 30 datasets of ISMRM/NIST phantom to assess the accuracy of in vitro quantitative TMRF data. The repeatability of T1 and T2 estimates by TMRF was evaluated by calculating the standard deviation (SD) divided by the average of 30 datasets for each sphere, respectively. We acquired 10 volunteers for the in vivo repeatability study on the same scanner using the same TMRF sequence. These volunteers were imaged five times with two runs per repetition, resulting in 100 in vivo datasets. Five contrasts, T1 and T2 maps of 10 human volunteers acquired over five repetitions, were evaluated in the in vivo repeatability study. We computed the intraclass correlation coefficient (ICC) of the signal-to-noise ratio (SNR), signal intensities, T1 and T2 relaxation times in white matter (WM), and gray matter (GM). RESULTS: The synthetic images generated from MRF show partial volume and flow artifacts compared to non-synthetic images obtained from TMRF images and the GS. In vitro studies show that TMRF estimates have less than 5% variations except sphere 14 in the T2 array (6.36%). TMRF and SE relaxometry measurements were strongly correlated; R2 values were 0.9958 and 0.9789 for T1 and T2 estimates, respectively. Based on the ICC values, SNR, mean intensity values, and relaxation times of WM and GM for the in vivo studies were consistent. T1 and T2 values of WM and GM were similar to previously published values. The mean ± SD of T1 and T2 for WM for ten subjects and five repeats are 992 ± 41 ms and 99 ± 6 ms, while the corresponding values for T1 and T2 for GM are 1598 ± 73 ms and 152 ± 14 ms. CONCLUSION: TMRF and deep learning-based reconstruction produce repeatable, non-synthetic multi-contrast images, and parametric maps simultaneously.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Reproducibilidad de los Resultados
6.
Magn Reson Imaging ; 87: 7-18, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34861358

RESUMEN

Open-source pulse sequence programs offer an accessible and transparent approach to sequence development and deployment. However, a common framework for testing, documenting, and sharing open-source sequences is still needed to ensure sequence usability and repeatability. We propose and demonstrate such a framework by implementing two sequences, Inversion Recovery Spin Echo (IRSE) and Turbo Spin Echo (TSE), with PyPulseq, and testing them on a commercial 3 T scanner. We used the ACR and ISMRM/NIST phantoms for qualitative imaging and T1/T2 mapping, respectively. The qualitative sequences show good agreement with vendor-provided counterparts (mean Structural Similarity Index Measure (SSIM) = 0.810 for IRSE and 0.826 for TSE). Both sequences passed five out of the seven standard ACR tests, performing at similar levels to vendor counterparts. Compared to reference values, the coefficient of determination R2 was 0.9946 for IRSE T1 mapping and 0.9331 for TSE T2 mapping. All sequences passed the scanner safety check for a 70 kg, 175 cm subject. The framework was demonstrated by packaging the sequences and sharing them on GitHub with data and documentation on the file generation, acquisition, reconstruction, and post-processing steps. The same sequences were tested at a second site using a 1.5 T scanner with the information shared. PDF templates for both sequence developers and users were created and filled.


Asunto(s)
Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
7.
Data Brief ; 42: 108105, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35434217

RESUMEN

Raw data, simulated and acquired phantom images, and quantitative longitudinal and transverse relaxation times (T1/T2) maps from two open-source Magnetic Resonance Imaging (MRI) pulse sequences are presented in this dataset along with corresponding ".seq" files, sequence implementation scripts, and reconstruction/analysis scripts [1]. Real MRI data were collected from a 3T Siemens Prisma Fit and a 1.5T Siemens Aera via the Pulseq open-source MR sequence platform, and corresponding in silico data were generated using the simulation module of Virtual Scanner [2]. This dataset and its associated code can be used to validate the pipeline for using the same pulse sequences at other research sites using Pulseq, to provide guidelines for documenting and sharing open-source pulse sequences in general, and to demonstrate practical, customizable acquisition scripts using the PyPulseq library.

8.
Med Phys ; 48(5): 2438-2447, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33690905

RESUMEN

PURPOSE: To compare the bias and inherent reliability of the quantitative (T1 and T2 ) imaging metrics generated from the magnetic resonance fingerprinting (MRF) technique using the ISMRM/NIST system phantom in an international multicenter setting. METHOD: ISMRM/NIST MRI system phantom provides standard reference T1 and T2 relaxation values (vendor-provided) for each of the 14 vials in T1 and T2 arrays. MRF-SSFP scans repeated over 30 days on GE 1.5 and 3.0 T scanners at three collaborative centers. MRF estimated T1, and T2 values averaged over 30 days were compared with the phantom vendor-provided and spin-echo (SE) based convention gold standard (GS) method. Repeatability and reproducibility were characterized by the within-case coefficient of variation (wCV) of the MRF data acquired over 30 days, along with the biases. RESULT: For the wide ranges of MRF estimated T1 values, vials #1-8 (T1 relaxation time between 2033 and 184 ms) exhibited a wCV less than 3% and 4%, respectively, on 3.0 and 1.5 T scanners. T2 values in vials #1-8 (T2 relaxation, 1044-45 ms) have shown wCV to be <7% on both 3.0 and 1.5 T scanners. A stronger linear correlation overall for T1 (R2  = 0.9960 and 0.9963 at center-1 and center-2 on 3.0 T scanner, and R2  = 0.9951 and 0.9988 at center-1 and center-3 on 1.5 T scanner) compared to T2 (R2  = 0.9971 and 0.9972 at center-1 and center-2 on 3.0 T scanner, and R2  = 0.9815 and 0.9754 at center-1 and center-3 on 1.5 T scanner). Bland-Altman (BA) analysis showed MRF based T1 and T2 values were within the limit of agreement (LOA) except for one data point. The mean difference or bias and 95% lower bound (LB) and upper bound (UB) LOA are reported in the format; mean bias: 95% LB LOA: 95% UB LOA. The biases for T1 values were 21.34: -50.00: 92.69, 21.32: -47.29: 89.94 ms, and for T2 values were -19.88: -42.37: 2.61, -19.06: -43.58: 5.45 ms on 3.0 T scanner at center-1 and center-2, respectively. Similarly, on 1.5 T scanner biases for T1 values were 26.54: -53.41: 106.50, 9.997: -51.94: 71.94 ms, and for T2 values were -23.84: -135.40: 87.76, -37.30: 134.30: 59.73 ms at center-1 and center-3, respectively. Additionally, the correlation between the SE based GS and MRF estimated T1 and T2 values (R2  = 0.9969 and 0.9977) showed a similar trend as we observed between vendor-provided and MRF estimated T1 and T2 values (R2  = 0.9963 and 0.9972). In addition to correlation, BA analysis showed that all the vials are within the LOA between the GS and vendor-provided for the T1 values and except one vial for T2 . All the vials are within the LOA between GS and MRF except one vial in T1 and T2 array. The wCV for reproducibility was <3% for both T1 and T2 values in vials #1-8, for all the 14 vials, wCV calculated for reproducibility was <4% for T1 values and <5% for T2 . CONCLUSION: This study shows that MRF is highly repeatable (wCV <4% for T1 and <7% for T2 ) and reproducible (wCV < 3% for both T1 and T2 ) in certain vials (vials #1-8).


Asunto(s)
Benchmarking , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA