Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(2): 69, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342840

RESUMEN

Storage and transportation of coal, as well as operation of coal-fired power plants, produce amounts of metallic exhaust that may lead to different atmospheric environment in the overlapped areas of farmland and coal resource (OAFCR) environment. To investigate the effects of different atmospheric environment in the OAFCR region (north of Xuzhou) on wheat seedlings (AK-58), a box experiment was conducted and compared to an area far from the OAFCR (south of Xuzhou). The study revealed that (1) compared to the southern suburb of Xuzhou, the fresh and dry weight, activities of photosynthetic enzymes and POD of wheat seedlings in the OAFCR reduced obviously. (2) Significantly higher levels of Cr, Cd, Pb, Zn, and Cu were found in the shoots and roots of wheat seedlings in the OAFCR, with lower transfer factor for heavy metals (except Cd and As) in comparison to those in the southern suburb. And the bioconcentration factors of heavy metals (except As) in wheat seedlings in the OAFCR were significantly higher. (3) Nearly 90% of heavy metals (Pb, Cu, Cd, Zn, and Cr) absorbed by wheat were stored in cell walls and soluble fractions, with significantly higher contents of Cu and Cr in wheat seedlings' cell walls and higher contents of Pb, Zn, and Cd in soluble components found in the OAFCR. Our results showed that atmospheric deposition in the mining area has a certain toxic effect on wheat seedlings, and this study provides a theoretical basis for OAFCR crop toxicity management.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Triticum , Plantones , Suelo , Cadmio , Plomo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Carbón Mineral , Monitoreo del Ambiente/métodos , China , Medición de Riesgo
2.
Environ Monit Assess ; 195(11): 1327, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847320

RESUMEN

In China, coal provides about 56.8% of the energy. Most of China's coal mines are shaft mines, which cause the surface to collapse and crack during the mining process. The soil near the cracks changes its physicochemical properties due to the altered stress conditions. This will affect the distribution of PTEs in the soil. We collected 18 samples from a selected crack in the abandoned land. The pH, Eh, and PTE and their fractions of the samples were determined. With the test results, we understand the distribution characteristics of pH, Eh, PTEs, and their fractions at the cracks. Meanwhile, we explored the key factors that contribute to this distribution. It was determined that crack decreases surface soil pH while increasing Eh. The total amount of 7 PTEs is higher in the bottom soil of the main crack and 2 m away from the main crack. The content of reducible fractions of PTEs increases with the increase of soil Eh. The oxidizable and residual fractions of PTEs adsorbed to the clay particles migrate to and enrich the deeper layers of the main crack. This study emphasizes the effect of crack generation on the distribution of PTEs in soil. It provides insights to describe the distribution of PTE throughout the full life cycle of crack.


Asunto(s)
Minas de Carbón , Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Minería , Suelo/química , China , Carbón Mineral , Medición de Riesgo
4.
Environ Sci Pollut Res Int ; 31(29): 41980-41989, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38856857

RESUMEN

Coal is one of the primary energy sources in China and is widely used for electricity generation. Crops growing in overlapped areas of farmland and coal resources (OAFCR) suffer from coal fly ash stress, especially during stem elongation, which is a key stage that impacts wheat yield and is sensitive to environmental stress. As a primary food crop of China, wheat is essential for food security. However, the characteristics of wheat under the combined stress of fly ash and various heavy metals have not been sufficiently investigated. In this study, we explored the response of stem elongation in wheat to different levels of coal fly ash stress and determined the content of heavy metals (HMs) in wheat leaves. We found that with an increase in fly ash content, the Cu content in the shoots increased, while that in the roots decreased. Coal fly ash exposure reduced the proportions of Pb and Zn in the cytoderm, and the proportion of Cu in the soluble constituents decreased from 58.3% to 45.7%. Total chlorophyll, chlorophyll a, and chlorophyll b levels decreased significantly, whereas peroxidase (POD) and catalase (CAT) activities generally increased with increasing fly ash dose. Meanwhile, chloroplasts, mitochondria, and their internal structures were damaged, and the cell structures of leaves, such as the internal membrane structure, were damaged.


Asunto(s)
Ceniza del Carbón , Metales Pesados , Fotosíntesis , Triticum , Fotosíntesis/efectos de los fármacos , Carbón Mineral , Hojas de la Planta , Tallos de la Planta/efectos de los fármacos , Clorofila , China , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA