Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 628(8008): 515-521, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509374

RESUMEN

The convergence of topology and correlations represents a highly coveted realm in the pursuit of new quantum states of matter1. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order2-8, not possible in quantum Hall and Chern insulator systems. Here we report a new dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator, manifesting enhanced nonlocal transport and quantized helical edge conductance. After introducing electrons from charge neutrality, TaIrTe4 shows metallic behaviour in only a small range of charge densities but quickly goes into a new insulating state, entirely unexpected on the basis of the single-particle band structure of TaIrTe4. This insulating state could arise from a strong electronic instability near the van Hove singularities, probably leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state. The observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands through CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism2-4,9,10.

2.
Nano Lett ; 22(13): 5523-5529, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35731986

RESUMEN

Activating metamagnetic transitions between ordered states in van der Waals magnets and devices bring great opportunities in spintronics. We show that external pressure, which enhances the interlayer hopping without introducing chemical disorders, triggers multiple metamagnetic transitions upon cooling in the topological van der Waals magnets Mn(Bi1-xSbx)4Te7, where the antiferromagnetic interlayer superexchange coupling competes with the ferromagnetic interlayer coupling mediated by the antisite Mn spins. The temperature-pressure phase diagrams reveal that while the ordering temperature from the paramagnetic to ordered states is almost pressure-independent, the metamagnetic transitions show nontrivial pressure and temperature dependence, even re-entrance. For these highly anisotropic magnets, we attribute the former to the ordering temperature being only weakly dependent on the intralayer parameters and the latter to the parametrically different pressure and temperature dependence of the two interlayer couplings. Our independent probing of these disparate magnetic interactions paves an avenue for efficient magnetic manipulations in van der Waals magnets.

3.
Natl Sci Rev ; 11(2): nwad282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213523

RESUMEN

The search for magnetic topological materials has been at the forefront of condensed matter research for their potential to host exotic states such as axion insulators, magnetic Weyl semimetals, Chern insulators, etc. To date, the MnBi2nTe3n+1 family is the only group of materials showcasing van der Waals-layered structures, intrinsic magnetism and non-trivial band topology without trivial bands at the Fermi level. The interplay between magnetism and band topology in this family has led to the proposal of various topological phenomena, including the quantum anomalous Hall effect, quantum spin Hall effect and quantum magnetoelectric effect. Among these, the quantum anomalous Hall effect has been experimentally observed at record-high temperatures, highlighting the unprecedented potential of this family of materials in fundamental science and technological innovation. In this paper, we provide a comprehensive review of the research progress in this intrinsic magnetic topological insulator family, with a focus on single-crystal growth, characterization of chemical disorder, manipulation of magnetism through chemical substitution and external pressure, and important questions that remain to be conclusively answered.

4.
Science ; 381(6654): 181-186, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37319246

RESUMEN

Quantum geometry in condensed-matter physics has two components: the real part quantum metric and the imaginary part Berry curvature. Whereas the effects of Berry curvature have been observed through phenomena such as the quantum Hall effect in two-dimensional electron gases and the anomalous Hall effect (AHE) in ferromagnets, the quantum metric has rarely been explored. Here, we report a nonlinear Hall effect induced by the quantum metric dipole by interfacing even-layered MnBi2Te4 with black phosphorus. The quantum metric nonlinear Hall effect switches direction upon reversing the antiferromagnetic (AFM) spins and exhibits distinct scaling that is independent of the scattering time. Our results open the door to discovering quantum metric responses predicted theoretically and pave the way for applications that bridge nonlinear electronics with AFM spintronics.

5.
Rev Sci Instrum ; 91(2): 023902, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32113413

RESUMEN

We present the design and construction of an apparatus that measures the Seebeck coefficient of single crystals under in situ tunable strain at cryogenic temperatures. A home-built three piezostack apparatus applies uni-axial stress to a single crystalline sample and modulates anisotropic strain up to 0.7%. An alternating heater system and cernox sensor thermometry measure the Seebeck coefficient along the uniaxial stress direction. To demonstrate the efficacy of this apparatus, we applied uniaxial stress to detwin single crystals of BaFe2As2 in the orthorhombic phase. The obtained Seebeck coefficient anisotropy is in good agreement with previous measurements using a mechanical clamp.

6.
Sci Adv ; 5(8): eaav9771, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31448327

RESUMEN

A phase transition between topologically distinct insulating phases involves closing and reopening the bandgap. Near the topological phase transition, the bulk energy spectrum is characterized by a massive Dirac dispersion, where the bandgap plays the role of mass. We report measurements of strain dependence of electrical transport properties of ZrTe5, which is known to host massive Dirac fermions in the bulk due to its proximity to a topological phase transition. We observe that the resistivity exhibits a pronounced minimum at a critical strain. We further find that the positive longitudinal magnetoconductance becomes maximal at the critical strain. This nonmonotonic strain dependence is consistent with the switching of sign of the Dirac mass and, hence, a strain-tuned topological phase transition in ZrTe5.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA