Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(28): e202303268, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37191368

RESUMEN

Biosupercapacitors (BSCs) that can harvest and store chemical energy show great promise for power delivery of biological applications. However, low power density still limits their applications, especially as miniaturized implants. Here, we report an implantable fiber BSC with maximal power density of 22.6 mW cm-2 , superior to the previous reports. The fiber BSC was fabricated by integrating anode and cathode fibers of biofuel cell with supercapacitor fibers through multi-strand twisting. This twisting structure endowed many channels inside and high electrochemical active area for efficient mass diffusion and charge transfer among different fibers, benefiting high power output. The obtained thin and flexible fiber BSC operated stably under deformations and performed high biocompatibility after implantation. Eventually, the fiber BSC was implanted subcutaneously in rats and successfully realized electrical stimulation of sciatic nerve, showing promise as a power source in vivo.


Asunto(s)
Fuentes de Energía Bioeléctrica , Ratas , Animales , Electrodos , Glucosa/química , Prótesis e Implantes
2.
Nanotechnology ; 30(3): 032002, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30444731

RESUMEN

Cancer is a major disease that seriously threatens human health and is a leading cause of human death. At present, the commonly used cancer treatment methods are surgical therapy, chemical drug therapy and radiation therapy (RT). However, these treatments all have their own shortcomings and cannot perfectly meet the needs of clinical diagnosis and treatment. It is of great significance to improve the diagnosis and treatment level, so that the curative effect and quality of life of tumor patients can be improved. The rapid development of nanotechnology has brought hope to the diagnosis and treatment of cancer and the appearance of biofunctional magnetic hybrid nanomaterials (MHNs) has provided a new possibilities for the integration of cancer diagnosis and treatment. As a promising research direction, the multifunctional nanoplatform integrates imaging diagnosis, drug therapy and drug delivery. Better treatment effects and fewer side effects can be achieved by optimizing materials to build stable, efficient, and safe MHNs with combined functions of multimodal imaging and various treatments. This review focuses on not only the research progress of MHNs but also their applications and development trend in the integration of cancer diagnosis and treatment. A description of the applications of MHN structure optimization for both magnetic resonance imaging-based multimodal diagnosis and cancer therapy is given. Furthermore, RT is introduced and the development of MHNs for diagnosis and treatment system is investigated.

3.
Adv Healthc Mater ; 12(31): e2301610, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37717208

RESUMEN

Repairing high-load connective tissues, such as ligaments, by surgically implanting artificial grafts after injury is challenging because they lack biointegration with host bones for stable interfaces. Herein, a high-performance helical composite fiber (HCF) ligament by wrapping aligned carbon nanotube (CNT) sheets around polyester fibers is proposed. Anterior cruciate ligament (ACL) reconstruction surgery shows that HCF grafts could induce effective bone regeneration, thus allowing the narrowing of bone tunnel defects. Such repair of the bone tunnel is in strong contrast to the tunnel enlargement of more than 50% for commercial artificial ligaments made from bare polyester fibers. Rats reconstructed with this HCF ligament show normal jumping, walking, and running without limping. This work allows bone regeneration in vivo through a one-step surgery without seeding cells or transforming growth factors, thereby opening an avenue for high-performance artificial tissues.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Nanotubos de Carbono , Animales , Ratas , Ligamento Cruzado Anterior/trasplante , Poliésteres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA