Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(5): 3373-3382, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38272666

RESUMEN

Reticular chemistry effectively yields porous structures with distinct topological lattices for a broad range of applications. Polyhedral oligomeric silsesquioxane (POSS)-based octatopic building blocks with a rare Oh symmetric configuration and attracting inorganic features have great potential for creating three-dimensional (3D) covalent organic frameworks (COFs) with new topologies. However, the intrinsic flexibility and intensive motion of cubane-type POSS molecules make the construction of 3D regular frameworks challenging. Herein, by fastening three or four POSS cores with per aromatic rigid linker from rational steric directions, we successfully developed serial crystalline 3D COFs with unpresented "the" and scu topologies. Both the experimental and theoretical results proved the formation of target 3D POSS-based COFs. The resultant hybrid networks with designable chemical skeletons and high surface areas maintain the superiorities of both the inorganic and organic components, such as their high compatibility with inorganic salts, abundant periodic electroactive sites, excellent thermal stability, and open multilevel nanochannels. Consequently, the polycubane COFs could serve as outstanding solid electrolytes with a high ionic conductivity of 1.23 × 10-4 S cm-1 and a lithium-ion transference number of 0.86 at room temperature. This work offers a pathway to generate ordered lattices with multiconnected flexible cube motifs and enrich the topologies of 3D COFs for potential applications.

2.
J Am Chem Soc ; 143(35): 14253-14260, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34459185

RESUMEN

Metal halide perovskite quantum dots, with high light-absorption coefficients and tunable electronic properties, have been widely studied as optoelectronic materials, but their applications in photocatalysis are hindered by their insufficient stability because of the oxidation and agglomeration under light, heat, and atmospheric conditions. To address this challenge, herein, we encapsulated CsPbBr3 nanocrystals into a stable iron-based metal-organic framework (MOF) with mesoporous cages (∼5.5 and 4.2 nm) via a sequential deposition route to obtain a perovskite-MOF composite material, CsPbBr3@PCN-333(Fe), in which CsPbBr3 nanocrystals were stabilized from aggregation or leaching by the confinement effect of MOF cages. The monodispersed CsPbBr3 nanocrystals (4-5 nm) within the MOF lattice were directly observed by transmission electron microscopy and corresponding mapping analysis and further confirmed by powder X-ray diffraction, infrared spectroscopy, and N2 adsorption characterizations. Density functional theory calculations further suggested a significant interfacial charge transfer from CsPbBr3 quantum dots to PCN-333(Fe), which is ideal for photocatalysis. The CsPbBr3@PCN-333(Fe) composite exhibited excellent and stable oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities in aprotic systems. Furthermore, CsPbBr3@PCN-333(Fe) composite worked as the synergistic photocathode in the photoassisted Li-O2 battery, where CsPbBr3 and PCN-333(Fe) acted as optical antennas and ORR/OER catalytic sites, respectively. The CsPbBr3@PCN-333(Fe) photocathode showed lower overpotential and better cycling stability compared to CsPbBr3 nanocrystals or PCN-333(Fe), highlighting the synergy between CsPbBr3 and PCN-333(Fe) in the composite.

3.
Angew Chem Int Ed Engl ; 59(41): 18224-18228, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32613736

RESUMEN

Intriguing properties and functions are expected to implant into metal-organic layers (MOLs) to achieve tailored pore environments and multiple functionalities owing to the synergies among multiple components. Herein, we demonstrate a facile one-pot synthetic strategy to incorporate multiple functionalities into stable zirconium MOLs via secondary ligand pillaring. Through the combination of Zr6 -BTB (BTB=benzene-1,3,5-tribenzoate) layers and diverse secondary ligands (including ditopic and tetratopic linkers), 31 MOFs with multi-functionalities were systematically prepared. Notably, a metal-phthalocyanine fragment was successfully incorporated into this Zr-MOL system, giving rise to an ideal platform for the selective oxidation of anthracene. The organic functionalization of two-dimensional MOLs can generate tunable porous structures and environments, which may facilitate the excellent catalytic performance of as-synthesized materials.

4.
Circ Cardiovasc Imaging ; 16(9): e015773, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37725669

RESUMEN

BACKGROUND: Coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) have been used to diagnose lesion-specific ischemia in patients with coronary artery disease. The aim of this study was to investigate the diagnostic performance of CCTA-derived plaque characteristic index compared with myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) derived from CMR perfusion in the assessment of lesion-specific ischemia. METHODS: Between October 2020 and March 2022, consecutive patients with suspected or known coronary artery disease, who were clinically referred for invasive coronary angiography were prospectively enrolled. All participants sequentially underwent CCTA and CMR and invasive fractional flow reserve within 2 weeks. The diagnostic performance of CCTA-derived plaque characteristics, CMR perfusion-derived stress MBF, and MPR were compared. Lesions with fractional flow reserve ≤0.80 were considered to be hemodynamically significant stenosis. RESULTS: Nighty-two patients with 141 vessels were included in this study. Plaque length, minimum luminal area, plaque area, percent area stenosis, total atheroma volume, vessel volume, lipid-rich volume, spotty calcium, napkin-ring signs, stress MBF, and MPR in flow-limiting stenosis group were significantly different from nonflow-limiting group. The overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of lesion-specific ischemia diagnosis were 61.0%, 55.3%, 63.1%, 35.6%, and 79.3% for stress MBF, and 89.4%, 89.5%, 89.3%, 75.6%, 95.8% for MPR; meanwhile, 82.3%, 79.0%, 84.5%, 65.2%, and 91.6% for CCTA-derived plaque characteristic index. CONCLUSIONS: In our prospective study, CCTA-derived plaque characteristics and MPR derived from CMR performed well in diagnosing lesion-specific myocardial ischemia and were significantly better than stress MBF in stable coronary artery disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Constricción Patológica , Estudios Prospectivos , Isquemia , Tomografía Computarizada por Rayos X , Angiografía Coronaria , Perfusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA