Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 49(17): 4895-4898, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207991

RESUMEN

A method for maintaining a fixed phase relationship between the driving signal of acousto-optic modulator (AOM) and the original mode-locked seed laser is proposed and realized, which stabilizes the amplitude of diffracted signal output from the AOM for subsequent amplification. A field-programmable gate array (FPGA), combined with external summing amplifiers, is used to directly synthesize high-timing-precision driving signals that are synchronized with the seed laser pulses, and the accuracy of signal timing control reaches 160 ps. Using this driver, the standard deviation of the diffracted signal output from the AOM is significantly decreased from 0.52% to 0.18%. This pulse-picking solution also includes a control system that can flexibly control the frequency, gating width, etc., of the driving signal, which makes it more convenient for subsequent laser amplification and makes it suitable for a variety of mode-locked lasers.

2.
Sensors (Basel) ; 23(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36772317

RESUMEN

High temperature detection is a constant challenge for condition monitoring under harsh environments in optical fiber sensors research. In this study, the temperature response characteristics of guided acoustic wave Brillouin scattering (GAWBS) spectra in silica single-mode fiber (SMF) up to 800 °C are experimentally investigated, demonstrating the feasibility of the method for high-temperature monitoring. With increasing temperature, the resonance frequency of GAWBS spectra increases in a nearly linear manner, with linearly fitted temperature-dependent frequency shift coefficients of 8.19 kHz/°C for TR2,7 mode and 16.74 kHz/°C for R0,4 mode. More importantly, the linewidth of the GAWBS spectra is observed to narrow down with increasing temperature with a linearly fitted rate of -6.91 × 10-4/°C for TR2,7 modes and -8.56 × 10-4/°C for R0,4 modes. The signal-to-noise ratio of the GAWBS spectra induced by both modes increase by more than 3 dB when the temperature rises from 22 °C to 800 °C, which indicates that the proposed sensing scheme has better performance in high-temperature environments, and are particularly suitable for sensing applications in extreme environments. This study confirms the potential of high-temperature sensing using only GAWBS in silica fibers without any complex micromachining process, which has the advantages of strong mechanical strength, simple structure, easy operation, and low cost.

3.
Opt Express ; 30(16): 29518-29530, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299125

RESUMEN

This paper presents a modeling method for extracavity-pumped terahertz parametric oscillators (TPO) based on stimulated polariton scattering, in which the pumping beam is from a different laser, and the Stokes beam oscillates in its cavity. After suitable approximations and assumptions, the average THz wave amplitude in the nonlinear crystal is expressed as a function of the fundamental and Stokes wave amplitudes. Then the rate equation for the Stokes wave is obtained based on the Stokes wave increment within a cavity roundtrip timescale. After solving the Stokes wave rate equation, the Stokes wave temporal evolution is considered as a known parameter, and the properties of the residual fundamental and terahertz waves are obtained by numerically solving the coupled wave equations. This modeling method is applied to an extracavity-pumped TPO based on MgO:LiNbO3 crystal. The simulation results are basically consistent with the experimental results. The main reasons causing the deviations of the simulation results from the experimental results are analyzed. To the best of our knowledge, this is the first time to perform the modeling for extracavity-pumped Q-switched TPOs.

4.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957279

RESUMEN

High-temperature measurements above 1000 °C are critical in harsh environments such as aerospace, metallurgy, fossil fuel, and power production. Fiber-optic high-temperature sensors are gradually replacing traditional electronic sensors due to their small size, resistance to electromagnetic interference, remote detection, multiplexing, and distributed measurement advantages. This paper reviews the sensing principle, structural design, and temperature measurement performance of fiber-optic high-temperature sensors, as well as recent significant progress in the transition of sensing solutions from glass to crystal fiber. Finally, future prospects and challenges in developing fiber-optic high-temperature sensors are also discussed.

5.
Opt Express ; 29(21): 32833-32841, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809106

RESUMEN

In this study, a long-distance phase-sensitive optical time domain reflectometry (Φ-OTDR) with a flexible frequency response based on time division multiplexing is proposed and experimentally demonstrated. Distributed flexible frequency vibration sensing over long distance can be realized by reconfiguring the system layout in a time-division-multiplexed manner by re-routing the Rayleigh backscattered signals for segmented processing with extra erbium-doped fiber amplifiers added only instead of any other complex signal amplification or pulse modulation mechanisms. Through time-division-multiplexed reconfiguration, the tradeoff between sensing distance and vibration frequency response in Φ-OTDR system is largely relieved. Compared with the traditional system layout, the proposed system allows a flexible frequency response in each sensing fiber segment without any crosstalk among them. In experiments, distributed vibration sensing with a frequency response up to 4.5 kHz is achieved over a sensing distance of 60km by the proposed system, which is not possible in a conventional Φ-OTDR system. Furthermore, the frequency response flexibility of the proposed system is further verified by successfully identifying a vibration event with a frequency of up to 20 kHz at the end of a 52-km-long fiber.

6.
Opt Express ; 28(10): 14237-14245, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403466

RESUMEN

The maximum detectable vibration frequency response range is inversely related with the sensing fiber length in direct-detection intensity-measuring coherent optical time domain reflectometry (DI-COTDR). Unlike the conventional uniform sampling, the pulse repetition rate is modulated in a time-division manner so that a multi-frequency sub-Nyquist sampling is realized along every point of the sensing fiber. A 24-kHz vibration signal can be detected and recovered by a compressive sensing technique using sampling pulses with repetition rate lower than 5-kHz, which is ten-fold lower compared to that required in the conventional uniform sampling method. Also, a multi-frequency vibration signal can be identified and recovered by this technique. The proposed method can break through the theoretical maximum detection frequency of traditional systems without any hardware modification. Therefore, such a method is of great significance for broadening the frequency response range of the distributed sparse-wideband vibration sensing.

7.
Opt Express ; 28(5): 6966-6980, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32225933

RESUMEN

In this paper, the rate equations describing the operation of intracavity-pumped Q-switched terahertz parametric oscillators based on stimulated polariton scattering are given for the first time. The rate equations are obtained under the plane-wave approximation, the oscillating fundamental and Stokes waves are supposed to be round uniform beam spots. Considering the fact that the terahertz wave nearly traverses the pump and Stokes beams and using the coupled wave equations, the terahertz wave intensity is expressed as the function of the fundamental and Stokes intensities. Thus, the rate equations describing the evolution processes of the fundamental and Stokes waves are obtained in the first step. The THz wave properties are then obtained. Several curves based on the rate equations are generated to illustrate the effects of the nonlinear coefficient, the THz wave absorption coefficient, and pulse repetition rate on the THz laser characteristics. Taking the intracavity-pumped Mg:LiNbO3 TPO as an example, the THz frequency tuning characteristic and the dependences of the fundamental, Stokes, and THz wave powers on the incident diode pump power are calculated. The theoretical results are in agreement with the experimental results on the whole.

8.
Opt Lett ; 45(4): 861-864, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32058490

RESUMEN

Stimulated polariton scattering (SPS) and stimulated Raman scattering (SRS) in ${{\rm RbTiOPO}_4}$RbTiOPO4 (RTP) crystal are combined in an intracavity-pumped Stokes parametric oscillator (SPO) to extend the tunable Stokes laser spectral range. The pumping laser wavelength is 1064 nm from a diode-end-pumped acousto-optically Q-switched Nd:YAG laser. By the SPS process in the SPO, the SPS-Stokes wave can be discontinuously tuned in the range of 1075.7-1076.0 nm, 1077.7-1080.4 nm, 1081.8-1082.2 nm, and 1084.8-1087.8 nm, respectively. By the following SRS process in the same RTP crystal, the laser wavelength is further shifted in the range of 1107.7-1108.1 nm, 1109.0-1112.7 nm, 1114.3-1115.1 nm, and 1117.8-1121.1 nm, respectively. A maximal average output power of 970 mW is achieved for the SRS-Stokes wave at the peak wavelength of 1118.8 nm. It is obtained when the diode power is 7.9 W, and the pulse repetition frequency (PRF) is 10 kHz.

9.
Opt Lett ; 45(12): 3288-3291, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538964

RESUMEN

The maximum detectable vibration frequency of an optical frequency domain reflectometry (OFDR) system is limited by the tunable rate of the laser source. Unlike uniform sampling with the time-resolved method, the sampling frequency is randomly modulated so that the vibration signal applied on the interrogation fiber is sampled by a multi-frequency sub-Nyquist sampling method and reconstructed by the compressive sensing technique. First, we give a full treatment to prove that the proposed method has the same performance as the conventional method. Second, in a further proof-of-concept experiment, the measurable frequency of a sparse signal is achieved up to 200 Hz with a sweeping rate of 40 nm/s. This method can recover the vibration signal with sampling rates less than that required by the Nyquist sampling theory, which is a significant step toward a high-performance OFDR system, especially for evaluating the intrinsic frequency of the object's structural condition.

10.
Appl Opt ; 59(32): 9931-9936, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33175764

RESUMEN

A linearly polarized low-noise single-frequency fiber laser was demonstrated by using a homemade 1.2-cm-long Yb:YAG crystal derived silica fiber. A maximum output power of greater than 60 mW was obtained with a signal-to-noise ratio of ∼80dB and a polarization extinction ratio of 27.8 dB. Additionally, the relative intensity noise was measured to be -145dB/Hz above 6.5 MHz. A frequency fluctuation of less than 20 MHz was also obtained. The output power was scaled up to 14.5 W with a one-stage all-fiber amplifier scheme with a slope efficiency of 56.4%.

11.
Opt Express ; 27(3): 3791-3798, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732393

RESUMEN

A Yb:YAG-derived silica fiber was fabricated by a molten-core fabrication method, in which a Yb:YAG crystal was used as the core material and a silica tube was used as the cladding material. The fiber's transmission loss was measured to be 0.49 dB/m at 1.55 µm, using a cut-back method. The fiber microstructure image showed that the cladding region was a uniform glass structure, while the core structure was amorphous. An all-fiber-integrated cladding-pumped laser based on Yb:YAG-derived silica fiber was demonstrated. With an incident pump power of 28 W, an output power of 6 W was obtained at 1.06 µm, with a slope efficiency of 21.7%.

12.
Sensors (Basel) ; 17(6)2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28613241

RESUMEN

A curvelet denoising method has been proposed to reduce the time domain noise to improve the detection performance in the distributed fiber vibration sensing system based on phase-sensitive optical time domain reflectometry. The raw Rayleigh backscattering traces are regarded as a gray image and the random noise can be eliminated by the curvelet transform; hence, the amplitude difference induced by the external vibration can be extracted. The detection of a vibration event with 10 m spatial resolution along a 4 km single mode fiber is demonstrated. The signal-to-noise ratio (SNR) of location information for 50 Hz and 1 kHz vibration based on this new method increases to as high as 7.8 dB and 8.0 dB, respectively, compared to the conventional method, showing the remarkable denoising capability of this new approach.

13.
Sensors (Basel) ; 17(8)2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28805725

RESUMEN

We propose a novel denoising method based on empirical mode decomposition (EMD) to improve the signal-to-noise ratio (SNR) for vibration sensing in phase-sensitive optical time domain reflectometry (φ-OTDR) systems. Raw Rayleigh backscattering traces are decomposed into a series of intrinsic mode functions (IMFs) and a residual component using an EMD algorithm. High frequency noise is eliminated by removing several IMFs at the position without vibration selected by the Pearson correlation coefficient (PCC). When the pulse width is 50 ns, the SNR of location information for the vibration events of 100 Hz and 1.2 kHz is increased to as high as 42.52 dB and 39.58 dB, respectively, with a 2 km sensing fiber, which demonstrates the excellent performance of this new method.

14.
Sensors (Basel) ; 17(1)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28098842

RESUMEN

A new technique of modulation index adjustment for pure wavelength modulation spectroscopy second harmonic signal waveforms recovery is presented. As the modulation index is a key parameter in determining the exact form of the signals generated by the technique of wavelength modulation spectroscopy, the method of modulation index adjustment is applied to recover the second harmonic signal with wavelength modulation spectroscopy. By comparing the measured profile with the theoretical profile by calculation, the relationship between the modulation index and average quantities of the scanning wavelength can be obtained. Furthermore, when the relationship is applied in the experimental setup by point-by-point modulation index modification for gas detection, the results show good agreement with the theoretical profile and signal waveform distortion (such as the amplitude modulation effect caused by diode laser) can be suppressed. Besides, the method of modulation index adjustment can be used in many other aspects which involve profile improvement. In practical applications, when the amplitude modulation effect can be neglected and the stability of the detection system is limited by the sampling rate of analog-to-digital, modulation index adjustment can be used to improve detection into softer inflection points and solve the insufficient sampling problem. As a result, measurement stability is improved by 40%.

15.
Sensors (Basel) ; 18(1)2017 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-29295599

RESUMEN

We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f0 = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C2H2) to select the laser wavelength. The system achieved a linear response (R² = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.

16.
Opt Express ; 24(7): 7558-65, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27137044

RESUMEN

This paper presents the tunable Stokes laser characteristics of KTiOAsO4 (KTA) crystal based on stimulated polariton scattering (SPS). When the pumping laser wavelength is 1064.2 nm, the KTA Stokes wave can be discontinuously tuned from 1077.9 to 1088.4 nm with four gaps from 1079.0 to 1080.1 nm, from 1080.8 to 1082.8 nm, from 1083.6 to 1085.5 nm, and from 1085.8 to 1086.8 nm. When a frequency doubling crystal LiB3O5 (LBO) is inserted into the Stokes laser cavity, the frequency-doubled wave can be discontinuously tuned from 539.0 to 539.5 nm, from 540.1 to 540.4 nm, from 541.3 to 541.8 nm, from 542.7 to 542.9 nm and from 543.4 to 544.2 nm. With a pumping pulse energy of 130.0 mJ and an output coupler reflectivity of about 30%, the obtained maximum Stokes laser pulse energy at 1078.6 nm is 33.9 mJ and the obtained maximum frequency-doubled laser pulse energy at 543.8 nm is 15.7 mJ. By using the most probably coupled transverse optical modes obtained from the literature, the polariton refractive indexes, and the simplified polariton Sellmeier equations, the polariton dispersion curve is obtained. The formation of the Stokes frequency gaps is explained.

17.
Appl Opt ; 55(13): 3526-30, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27140365

RESUMEN

Phase shift between the injection current and amplitude modulation due to the characteristics of diode lasers is discussed in this paper. Phase shift has no apparent regularity, but it has an obvious effect on measurement results, especially for high-precision measurement. A new method is proposed to suppress the influence of this phase shift. Water vapor is chosen as the target gas for experiment in this paper. A new detection system with the new method applied is presented and shows much better performance than the traditional wavelength modulation spectroscopy detection system. Phase shift fluctuation between the injection current and amplitude modulation is suppressed from 0.72 deg to 0.07 deg; accuracy is improved from 0.88 ppm to 0.16 ppm.

18.
Sensors (Basel) ; 16(2): 214, 2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26861344

RESUMEN

A right-angle prism was used to enhance the acoustic signal of a quartz-enhanced photoacoustic spectroscopy (QEPAS) system. The incident laser beam was parallelly inverted by the right-angle prism and passed through the gap between two tuning fork prongs again to produce another acoustic excitation. Correspondingly, two pairs of rigid metal tubes were used as acoustic resonators with resonance enhancement factors of 16 and 12, respectively. The QEPAS signal was enhanced by a factor of 22.4 compared with the original signal, which was acquired without resonators or a prism. In addition, the system noise was reduced a little with double resonators due to the Q factor decrease. The signal-to-noise ratio (SNR) was greatly improved. Additionally, a normalized noise equivalent absorption coefficient (NNEA) of 5.8 × 10(-8) W·cm(-1)·Hz(-1/2) was achieved for water vapor detection in the atmosphere.

19.
Opt Express ; 23(15): 20187-94, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367675

RESUMEN

The tunable Stokes laser characteristics based on the stimulated polariton scattering in KTiOPO4 (KTP) crystal and the intracavity frequency doubling properties for the Stokes laser are investigated for the first time. When the pumping laser wavelength is 1064.2 nm, and the angle between the pumping and Stokes beams outside the KTP crystal changes from 1.875° to 6.750°, the obtained tunable Stokes laser wavelength varies discontinuously from 1076.5 nm to 1091.4 nm with four gaps. When the pumping pulse energy is 120.0 mJ, the maximum Stokes pulse energy is 46.5 mJ obtained at the wavelength of 1086.6 nm. By inserting a LiB3O5 (LBO) crystal into the cavity, the obtained frequency-doubled laser wavelength is inconsecutive tunable from 538.5 nm to 543.8 nm. The maximum frequency-doubled laser pulse energy is 15.9 mJ at the wavelength of 543.5 nm.

20.
Opt Express ; 23(4): 4144-52, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836452

RESUMEN

Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA