Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(23): e2116462119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35658074

RESUMEN

Helicases are multifunctional motor proteins with the primary task of separating nucleic acid duplexes. These enzymes often exist in distinct oligomeric forms and play essential roles during nucleic acid metabolism. Whether there is a correlation between their oligomeric state and cellular function, and how helicases effectively perform functional switching remains enigmatic. Here, we address these questions using a combined single-molecule approach and Bloom syndrome helicase (BLM). By examining the head-on collision of two BLM-mediated DNA unwinding forks, we find that two groups of BLM, upon fork convergence, promptly oligomerize across the fork junctions and tightly bridge two independent single-stranded (ss) DNA molecules that were newly generated by the unwinding BLMs. This protein oligomerization is mediated by the helicase and RNase D C-terminal (HRDC) domain of BLM and can sustain a disruptive force of up to 300 pN. Strikingly, onsite BLM oligomerization gives rise to an immediate transition of their helicase activities, from unwinding dsDNA to translocating along ssDNA at exceedingly fast rates, thus allowing for the efficient displacement of ssDNA-binding proteins, such as RPA and RAD51. These findings uncover an activity transition pathway for helicases and help to explain how BLM plays both pro- and anti-recombination roles in the maintenance of genome stability.


Asunto(s)
ADN de Cadena Simple , RecQ Helicasas , ADN/metabolismo , ADN de Cadena Simple/genética , Recombinación Homóloga , Microscopía Confocal , Pinzas Ópticas , RecQ Helicasas/metabolismo
2.
Methods Mol Biol ; 2478: 329-347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36063326

RESUMEN

Helicases are ubiquitous molecular motor proteins that utilize the energy derived from the hydrolysis of nucleoside triphosphates (NTPs) to transiently convert the duplex form of nucleic acids to single-stranded intermediates for many biological processes. These enzymes play vital roles in nearly all aspects of nucleic acid metabolism, such as DNA repair and RNA splicing. Understanding helicase's functional roles requires methods to dissect the mechanisms of motor proteins at the molecular level. In the past three decades, there has been a large increase in the application of single-molecule approaches to investigate helicases. These techniques, such as optical tweezers and single-molecule fluorescence, offer capabilities to monitor helicase motions with unprecedented spatiotemporal resolution, to apply quantitative forces to probe the chemo-mechanical activities of these motors and to resolve helicase heterogeneity at the single-molecule level. In this chapter, we describe a single-molecule method that combines optical tweezers with confocal fluorescence microscopy to study helicase-catalyzed DNA unwinding. Using Bloom syndrome protein (BLM), a multifunctional helicase that maintains genome stability, as an example, we show that this method allows for the simultaneous detection of displacement, force and fluorescence signals of a single DNA molecule during unwinding in real time, leading to the discovery of a distinct bidirectional unwinding mode of BLM that is activated by a single-stranded DNA binding protein called replication protein A (RPA). We provide detailed instructions on how to prepare two DNA templates to be used in the assays, purify the BLM and RPA proteins, perform single-molecule experiments, and acquire and analyse the data.


Asunto(s)
Fenómenos Biológicos , Proteína de Replicación A , Catálisis , ADN/química , Replicación del ADN , ADN de Cadena Simple , Proteína de Replicación A/metabolismo
3.
Elife ; 92020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32101168

RESUMEN

BLM is a multifunctional helicase that plays critical roles in maintaining genome stability. It processes distinct DNA substrates, but not nicked DNA, during many steps in DNA replication and repair. However, how BLM prepares itself for diverse functions remains elusive. Here, using a combined single-molecule approach, we find that a high abundance of BLMs can indeed unidirectionally unwind dsDNA from a nick when an external destabilizing force is applied. Strikingly, human replication protein A (hRPA) not only ensures that limited quantities of BLMs processively unwind nicked dsDNA under a reduced force but also permits the translocation of BLMs on both intact and nicked ssDNAs, resulting in a bidirectional unwinding mode. This activation necessitates BLM targeting on the nick and the presence of free hRPAs in solution whereas direct interactions between them are dispensable. Our findings present novel DNA unwinding activities of BLM that potentially facilitate its function switching in DNA repair.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN-Topoisomerasas de Tipo I/metabolismo , RecQ Helicasas/metabolismo , Proteína de Replicación A/metabolismo , ADN de Cadena Simple/metabolismo
4.
Nat Commun ; 10(1): 2006, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043593

RESUMEN

Subcellular membrane-less organelles consist of proteins with low complexity domains. Many of them, such as hnRNPA1, can assemble into both a polydisperse liquid phase and an ordered solid phase of amyloid fibril. The former mirrors biological granule assembly, while the latter is usually associated with neurodegenerative disease. Here, we observe a reversible amyloid formation of hnRNPA1 that synchronizes with liquid-liquid phase separation, regulates the fluidity and mobility of the liquid-like droplets, and facilitates the recruitment of hnRNPA1 into stress granules. We identify the reversible amyloid-forming cores of hnRNPA1 (named hnRACs). The atomic structures of hnRACs reveal a distinct feature of stacking Asp residues, which contributes to fibril reversibility and explains the irreversible pathological fibril formation caused by the Asp mutations identified in familial ALS. Our work characterizes the structural diversity and heterogeneity of reversible amyloid fibrils and illuminates the biological function of reversible amyloid formation in protein phase separation.


Asunto(s)
Amiloide/ultraestructura , Gránulos Citoplasmáticos/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/ultraestructura , Amiloide/genética , Amiloide/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Asparagina/genética , Asparagina/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1/genética , Ribonucleoproteína Nuclear Heterogénea A1/aislamiento & purificación , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA