Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pharm Biol ; 59(1): 1607-1618, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34818128

RESUMEN

CONTEXT: Qingre Huoxue (QRHX) decoction, a traditional Chinese medicine, has been widely used to prevent and treat myocardial infarction (MI). OBJECTIVE: This study elucidates the possible mechanisms of QRHX in preventing or treating MI in a rat model. MATERIALS AND METHODS: The chemical constituents of QRHX were identified by UPLC-MS. Sprague-Dawley rats were randomly divided into the Sham (normal saline), Model (normal saline), QRHX-L, QRHX-M and QRHX-H group (n = 10 per group). QRHX decoction was administered by gavage to the rats for 14 days (5, 10 and 20 g/kg/day). The left anterior descending ligation method was performed to develop MI in Model and QRHX groups, and the same surgical procedures excluding ligation sutures were performed for the sham group. Finally, we evaluated cardiac function, myocardial fibrosis degree, serum inflammatory factors, autophagy levels and verified the signalling pathways in vivo. RESULTS: A total of 68 active components of QRHX corresponding to 223 active targets were obtained and 2558 MI-related disease targets were collected. After integration, 123 QRHX anti-MI targets were obtained, and 70 signalling pathways, such as PI3K/Akt, were identified by enrichment analysis. In vivo experiments suggest that QRHX could reduce the degree of myocardial fibrosis, downregulate serum inflammatory factors, and promote autophagy in MI rats. DISCUSSION AND CONCLUSIONS: QRHX plays a protective role in the myocardium by mediating PI3K/Akt signalling pathway to activate autophagy and inhibiting inflammatory factor expression. These findings provide a scientific basis for further research and validation of QRHX as a potential therapeutic for MI.


Asunto(s)
Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Infarto del Miocardio/prevención & control , Animales , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Masculino , Espectrometría de Masas , Farmacología en Red , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
2.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 35(2): 247-9, 2015 Feb.
Artículo en Zh | MEDLINE | ID: mdl-25881474

RESUMEN

Hyperlipidemia is an important risk factor of cardio-/cerebrovascular disease, and reducing lipids has become an important project for itsclinical preventing and treating. Western medicine, with its confirmative efficacy and clear mechanism, has played an irreplaceable role. Along with the development of modern medicine, integrative medicine has gradually become a growing trend in regulating blood lipids metabolism. It not only could make up the insufficient power for Chinese medicine in lowering lipids, but also could reduce adverse reactions and economic costs brought by long-term administration of Western medicine. As a modern practitioner of Chinese medicine, we should keep clear that integrative medicine regulating blood lipids metabolism does not mean a simple combination of traditional Chinese medicine and Western medicine. We should treat it guided by systematic theories. We combine disease identification and syndrome differentiation, guide lipids lowering by integrative medicine including selecting Western drugs for blood lipids lowering, Chinese medical prescriptions for syndrome typing, and effective Chinese herbs based on modern pharmacologies.


Asunto(s)
Lípidos/sangre , Medicina Tradicional China , Medicamentos Herbarios Chinos , Humanos , Medicina Integrativa , Factores de Riesgo
3.
Medicine (Baltimore) ; 103(31): e39065, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093733

RESUMEN

In patients with severe acute respiratory syndrome coronavirus 2 (which causes coronavirus disease 2019 [COVID-19]), oxidative stress (OS) is associated with disease severity and death. OS is also involved in the pathogenesis of atherosclerosis (AS). Previous studies have shown that geniposide has anti-inflammatory and anti-viral properties, and can protect cells against OS. However, the potential target(s) of geniposide in patients with COVID-19 and AS, as well as the mechanism it uses, are unclear. We combined pharmacology and bioinformatics analysis to obtain geniposide against COVID-19/AS targets, and build protein-protein interaction network to filter hub genes. The hub genes were performed an enrichment analysis by ClueGO, including Gene Ontology and KEGG. The Enrichr database and the target microRNAs (miRNAs) of hub genes were predicted through the MiRTarBase via Enrichr. The common miRNAs were used to construct the miRNAs-mRNAs regulated network, and the miRNAs' function was evaluated by mirPath v3.0 software. Two hundred forty-seven targets of geniposide were identified in patients with COVID-19/AS comorbidity by observing the overlap between the genes modulated by geniposide, COVID-19, and AS. A protein-protein interaction network of geniposide in patients with COVID-19/AS was constructed, and 27 hub genes were identified. The results of enrichment analysis suggested that geniposide may be involved in regulating the OS via the FoxO signaling pathway. MiRNA-mRNA network revealed that hsa-miR-34a-5p may play an important role in the therapeutic mechanism of geniposide in COVID-19/AS patients. Our study found that geniposide represents a promising therapy for patients with COVID-19 and AS comorbidity. Furthermore, the target genes and miRNAs that we identified may aid the development of new treatment strategies against COVID-19/AS.


Asunto(s)
Aterosclerosis , Tratamiento Farmacológico de COVID-19 , COVID-19 , Biología Computacional , Iridoides , MicroARNs , Mapas de Interacción de Proteínas , SARS-CoV-2 , Iridoides/farmacología , Iridoides/uso terapéutico , Humanos , Biología Computacional/métodos , MicroARNs/metabolismo , MicroARNs/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , SARS-CoV-2/genética , Estrés Oxidativo/efectos de los fármacos
4.
Artículo en Inglés | MEDLINE | ID: mdl-38178669

RESUMEN

BACKGROUND: Nardostachys chinensis is an herbal medicine widely used in the treatment of atrial fibrillation (AF), but the mechanism is unclear. OBJECTIVE: To explore the molecular mechanism of N. chinensis against AF. METHODS: The TCMSP was used to screen the active N. chinensis compounds and their targets. Differentially expressed genes (DEGs) for AF were identified using open-access databases. Using Venn diagrams, the cross-targets of N. chinensis, pyroptosis, and AF were obtained. The genes underwent molecular docking as well as gene set enrichment analysis (GSEA). A nomogram based on candidate genes was constructed and evaluated with the clinical impact curve. After that, the immune infiltration of the dataset was analyzed by single sample GSEA (ssGSEA). Finally, microRNAs (miRNAs) and transcription factors (TFs) were predicted based on candidate genes. RESULTS: Tumor necrosis factor (TNF) and caspase-8 (CASP8) were obtained as candidate genes by taking the intersection of DEGs, targets of N. chinensis, and pyroptosis-related genes. Tolllike receptor (TLR) and peroxisome proliferator-activated receptor (PPAR) signaling pathways were linked to candidate genes. Additionally, immune cell infiltration analysis revealed that CASP8 was associated with natural killer T cells, natural killer cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), macrophages, CD8 T cells, and CD4 T cells. Finally, miR-34a-5p and several TFs were found to regulate the expression of CASP8 and TNF. CONCLUSION: CASP8 and TNF are potential targets of N. chinensis intervention in pyroptosisrelated AF, and the TLR/NLRP3 signaling pathway may be associated with this process.

5.
Phytomedicine ; 129: 155617, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614041

RESUMEN

BACKGROUND: Atherosclerosis (AS) is the leading cause of global death, which manifests as arterial lipid stack and plaque formation. Geniposide is an iridoid glycoside extract from Gardenia jasminoides J.Ellis that ameliorates AS by mediating autophagy. However, how Geniposide regulates autophagy and treats AS remains unclear. PURPOSE: To evaluate the efficacy and mechanism of Geniposide in treating AS. STUDY DESIGN AND METHODS: Geniposide was administered to high-fat diet-fed ApoE-/- mice and oxidized low-density lipoprotein-incubated primary vascular smooth muscle cells (VSMCs). AS was evaluated with arterial lipid stack, plaque progression, and collagen loss in the artery. Foam cell formation was detected by lipid accumulation, inflammation, apoptosis, and the expression of foam cell markers. The mechanism of Geniposide in treating AS was assessed using network pharmacology. Lipophagy was measured by lysosomal activity, expression of lipophagy markers, and the co-localization of lipids and lipophagy markers. The effects of lipophagy were blocked using Chloroquine. The role of PARP1 was assessed by Olaparib (a PARP1 inhibitor) intervention and PARP1 overexpression. RESULTS: In vivo, Geniposide reversed high-fat diet-induced hyperlipidemia, plaque progression, and inflammation. In vitro, Geniposide inhibited VSMC-derived foam cell formation by suppressing lipid stack, apoptosis, and the expressions of foam cell markers. Network pharmacological analysis and in vitro validation suggested that Geniposide treated AS by enhancing lipophagy via suppressing the PI3K/AKT signaling pathway. The benefits of Geniposide in alleviating AS were offset by Chloroquine in vivo and in vitro. Inhibiting PARP1 using Olaparib promoted lipophagy and alleviated AS progression, while PARP1 overexpression exacerbated foam cell formation and lipophagy blockage. The above effects of PARP1 were weakened by PI3K inhibitor LY294002. PARP1 also inhibited the combination of the ABCG1 and PLIN1. CONCLUSION: Geniposide alleviated AS by restoring PARP1/PI3K/AKT signaling pathway-suppressed lipophagy. This study is the first to present the lipophagy-inducing effect of Geniposide and the binding of ABCG1 and PLIN1 inhibited by PARP1.


Asunto(s)
Aterosclerosis , Dieta Alta en Grasa , Iridoides , Fosfatidilinositol 3-Quinasas , Poli(ADP-Ribosa) Polimerasa-1 , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Iridoides/farmacología , Aterosclerosis/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Autofagia/efectos de los fármacos , Gardenia/química , Músculo Liso Vascular/efectos de los fármacos , Ratones Endogámicos C57BL , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Farmacología en Red , Lipoproteínas LDL
6.
J Ethnopharmacol ; 328: 118125, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38561055

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu Decoction (HLJDD) is a Chinese medicine with a long history of therapeutic application. It is widely used in treating atherosclerosis (AS) in Chinese medicine theory and clinical practice. However, the mechanism of HLJDD in treating AS remains unclear. AIM OF THE STUDY: To investigate the efficacy and mechanism of HLJDD in treating AS. MATERIALS AND METHODS: AS was induced on high-fat diet-fed ApoE-/- mice, with the aorta pathological changes evaluated with lipid content and plaque progression. In vitro, foam cells were induced by subjecting primary mouse aortic vascular smooth muscle cells (VSMCs) to oxLDL incubation. After HLJDD intervention, VSMCs were assessed with lipid stack, apoptosis, oxidative stress, and the expression of foam cell markers. The effects of P2RY12 were tested by adopting clopidogrel hydrogen sulfate (CDL) in vivo and transfecting P2RY12 over-expressive plasmid in vitro. Autophagy was inhibited by Chloroquine or transfecting siRNA targeting ATG7 (siATG7). The mechanism of HLJDD treating atherosclerosis was explored using network pharmacology and validated with molecular docking and co-immunoprecipitation. RESULTS: HLJDD exhibited a dose-dependent reduction in lipid deposition, collagen loss, and necrosis within plaques. It also reversed lipid accumulation and down-regulated the expression of foam cell markers. P2RY12 inhibition alleviated AS, while P2RY12 overexpression enhanced foam cell formation and blocked the therapeutic effects of HLJDD. Network pharmacological analysis suggested that HLJDD might mediate PI3K/AKT signaling pathway-induced autophagy. P2RY12 overexpression also impaired autophagy. Similarly, inhibiting autophagy counteracted the effect of CDL, exacerbated AS in vivo, and promoted foam cell formation in vitro. However, HLJDD treatment mitigated these detrimental effects by suppressing the PI3K/AKT signaling pathway. Immunofluorescence and molecular docking revealed a high affinity between P2RY12 and PIK3CB, while co-immunoprecipitation assays illustrated their interaction. CONCLUSIONS: HLJDD inhibited AS in vivo and foam cell formation in vitro by restoring P2RY12/PI3K/AKT signaling pathway-suppressed autophagy. This study is the first to reveal an interaction between P2RY12 and PI3K3CB.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Placa Aterosclerótica , Ratones , Animales , Células Espumosas , Músculo Liso Vascular , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Aterosclerosis/tratamiento farmacológico , Placa Aterosclerótica/tratamiento farmacológico , Autofagia
7.
J Cardiothorac Surg ; 18(1): 225, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430321

RESUMEN

BACKGROUND: Heyde's syndrome can be easily overlooked or misjudged in clinical practice because it shares common clinical manifestations with multiple diseases as well as limited accuracy of several corresponding examinations for diagnosing Heyde's triad. Moreover, aortic valve replacement is often delayed in these patients due to the contradiction between anticoagulation and hemostasis. Herein, we present a rare case of atypical Heyde's syndrome. The patient's severe intermittent gastrointestinal bleeding was not completely cured even through a local enterectomy. In the absence of direct evidence of acquired von Willebrand syndrome (AVWS) or angiodysplasia, her long-standing gastrointestinal bleeding was finally stopped after receiving transcatheter aortic valve implantation (TAVI). CASE PRESENTATION: A 64-year-old female suffered from refractory gastrointestinal bleeding and exertional dyspnoea. A local enterectomy was performed owing to persistent hemorrhage and repeated transfusions; subsequently, histological examination revealed angiodysplasia. Heyde's syndrome was not suspected until 3 years later, at which time the patient started bleeding again and was also found to have severe aortic valve stenosis upon echocardiography. TAVI was consequently performed when the patient was in a relatively stable condition even though the predisposition to bleed, but there was no evidence of angiodysplasia and AVWS during angiography at that time. The patient's above symptoms were significantly relieved after TAVI and followed up for 2 years without any significant ischemic or bleeding events. CONCLUSIONS: The visible characteristics of angiodysplasia or a shortage of HMWM-vWFs should not be indispensable for the clinical diagnosis of Heyde's syndrome. Enterectomy could be a bridging therapy for aortic valve replacement in patients with severe hemorrhage, and TAVI may be beneficial for moderate to high surgical-risk patients even if they have a potential risk of bleeding.


Asunto(s)
Angiodisplasia , Enfermedades del Colon , Humanos , Femenino , Persona de Mediana Edad , Angiodisplasia/complicaciones , Angiodisplasia/diagnóstico , Angiodisplasia/cirugía , Hemorragia Gastrointestinal/diagnóstico , Hemorragia Gastrointestinal/etiología , Hemorragia Gastrointestinal/cirugía , Anastomosis Quirúrgica , Angiografía
8.
J Ethnopharmacol ; 301: 115787, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36206868

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Qingre Huoxue Decoction (QRHX) is an herbal formula used for the prevention and treatment of AS. However, the potential mechanism of QRHX is not clear. AIM OF THE STUDY: In our study, RNA sequencing combined with preclinical models were used to analyse the effect and mechanism of QRHX for the treatment of AS. MATERIALS AND METHODS: For in vivo studies, ApoE-/- mice were fed with a high-fat diet to induce AS. We measured weight, blood lipid, inflammatory cytokines, lipid deposition, plaque, and the M1/M2 macrophage. For in vitro studies, RAW264.7 were induced by lipopolysaccharides and treated with different concentrations of QRHX. We focusd on the relationship between QRHX, the NF-κB pathway, and macrophage polarisation, and performed simultaneous RNA sequencing both in vivo and in vitro. RESULTS: In vivo, QRHX decreased weight, improved blood lipid, relieved the degree of lipid deposition, reduced plaque area, decreased the levels of inflammatory cytokines (MCP-1, NLRP3, and TNFα), down-regulated the expression of iNOS, and up-regulated the expression of Arg-1. In vitro, QRHX down-regulated M1 markers, iNOS and CCR7, with lower concentrations of IL-1ß; furthermore, QRHX up-regulated M2 markers, Arg-1, CD163, Ym-1, and Fizz-1, with higher concentrations of IL-4 and IL-10. RNA sequencing of both samples in vivo and in vitro suggested that NF-κB was the target pathway of QRHX to regulate macrophage polarisation; this result was validated at the gene and protein levels. CONCLUSIONS: QRHX induced M2 polarisation, reduced an inflammatory response, and played a role in stabilising plaque by mediating the NF-κB signalling pathway.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , FN-kappa B/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos , Lipopolisacáridos/farmacología , Citocinas/metabolismo , Placa Aterosclerótica/patología
9.
Oxid Med Cell Longev ; 2022: 4299892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186186

RESUMEN

Sick sinus syndrome (SSS), a complex type of cardiac arrhythmia, is a major health threat to humans. Shenfu injection (SFI), a formula of traditional Chinese medicine (TCM), is effective in improving bradyarrhythmia. However, the underlying mechanism of SFI's therapeutic effect is subject to few systematic investigations. The purpose of the present research is to examine whether SFI can boost the differentiation effectiveness of bone marrow mesenchymal stem cells (BMSCs) into pacemaker-like cells and whether the transplantation of these cells can improve the pacing function of the sinoatrial node (SAN) in a rabbit model of SSS. BMSCs from New Zealand rabbits were extracted, followed by incubation in vitro. The flow cytometry was utilized to identify the expression of CD29, CD44, CD90, and CD105 surface markers. The isolated BMSCs were treated with SFI, and the whole-cell patch-clamp method was performed to detect hyperpolarization-the activated cyclic nucleotide-gated potassium channel 4 (HCN4) channel current activation curve. The SSS rabbit model was established using the formaldehyde wet dressing method, and BMSCs treated with SFI were transplanted into the SAN of the SSS rabbit model. We detected changes in the body-surface electrocardiogram and recorded dynamic heart rate measurements. Furthermore, transplanted SFI-treated BMSCs were subjected to HE staining, TUNEL staining, qPCR, western blotting, immunofluorescence, immunohistochemistry, and enzyme-linked immunosorbent assay to study their characteristics. Our results indicate that the transplantation of SFI-treated BMSCs into the SAN of SSS rabbits improved the pacing function of the SAN. In vitro data showed that SFI induced the proliferation of BMSCs, promoted their differentiation capacity into pacemaker-like cells, and increased the HCN4 expression in BMSCs. In vivo, the transplantation of SFI treated-BMSCs preserved the function of SAN in SSS rabbits, improved the expression of the HCN4 gene and gap junction proteins (Cx43 and Cx45), and significantly upregulated the expression of cAMP in the SAN, compared to the SSS model group. In summary, the present research demonstrated that SFI might enhance the differentiation capacity of BMSCs into pacemaker-like cells, hence offering a novel approach for the development of biological pacemakers. Additionally, we confirmed the effectiveness and safety of pacemaker-like cells differentiated from BMSCs in improving the pacing function of the SAN.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Células Madre Mesenquimatosas/efectos de los fármacos , Síndrome del Seno Enfermo/tratamiento farmacológico , Nodo Sinoatrial/efectos de los fármacos , Animales , Diferenciación Celular , Medicamentos Herbarios Chinos/farmacología , Femenino , Humanos , Masculino , Conejos , Transfección
10.
J Healthc Eng ; 2022: 2457706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061816

RESUMEN

Objective: This study aimed to determine the active ingredients of Huanglian Jiedu decoction (HLJDD) and the targets for treating dyslipidemia through network pharmacology to facilitate further application of HJJDD in the treatment of dyslipidemia. Methods: Potential drug targets for dyslipidemia were identified with a protein-protein interaction network. Gene ontology (GO) enrichment analysis and KEGG pathway analysis were performed to elucidate the biological function and major pathways involved in the HLJDD-mediated treatment of dyslipidemia. Results: This approach revealed 22 components, 234 targets of HLJDD, and 221 targets of dyslipidemia. There were 14 components and 31 common targets between HLJDD and dyslipidemia treatment. GO enrichment analysis showed that these targets were mainly associated with the response to DNA-binding transcription factor activity, lipid localization and storage, reactive oxygen species metabolic process, and inflammatory response. The results of KEGG analysis indicated that the AGE-RAGE, NF-κB, HIF-1, IL-17, TNF, FoxO, and PPAR signalling pathways were enriched in the antidyslipidemic action of HLJDD. Conclusion: This study expounded the pharmacological actions and molecular mechanisms of HLJDD in treating dyslipidemia from a holistic perspective, which may provide a scientific basis for the clinical application of HLJDD.


Asunto(s)
Medicamentos Herbarios Chinos , Dislipidemias , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Dislipidemias/tratamiento farmacológico , Humanos , Farmacología en Red , Mapas de Interacción de Proteínas
11.
Medicine (Baltimore) ; 101(50): e32311, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36550849

RESUMEN

BACKGROUND: Heart failure (HF), manifested as a severe or end stage of various cardiac diseases, is characterized by increased incidence, mortality, re-hospitalization, and economic burden. Myocardial infarction (MI) is one of the most common and important causes of HF. Since 2005, acute MI (AMI)-associated mortality in China has been on the rise, and MI accounts for 23.1% of the causes of HF. Traditional Chinese medicine (TCM) has the unique advantages of controlling angina pectoris and HF symptoms, and improving patients' quality of life. Compound Xueshuantong Capsule (CXSTC), also named as Fufang Xueshuantong Capsule, has the effect of increasing cardiac output and protecting myocardial function. In this trial, we aim to investigate the efficacy and safety of CXSTC in the prophylactic treatment of post-infarction HF and attempt to provide a clinical evidence-based basis for the prophylactic treatment of HF after AMI using TCM. METHODS: This will be a multi-center, randomized, double-blind, placebo-parallel controlled trial. A total of 300 patients diagnosed with AMI and undergoing percutaneous coronary intervention within 12 hours of diagnosis will be randomized 1:1 into 2 groups: the control group that will be administered conventional Western medicine plus placebo and the trial group that will be administered XST along with the conventional Western medicine. The duration of treatment will be 3 months and the follow-up will be up to 6 months for both groups. The main efficacy indicator is the incidence of HF. The secondary efficacy indicators are cardiac function classification, 6-minute walk test score, TCM syndrome score, survival quality score, brain natriuretic peptide level, ultrasensitive C-reactive protein level, and cardiac ultrasound result. Data will be collected to analyze the underlying mechanisms by using IBM SPSS 23.0 software. DISCUSSION: By investigating the efficacy and safety of CXSTC, this study will provide a clinical evidence base for the use of TCM in the prophylactic treatment of post-infarction HF.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Calidad de Vida , Incidencia , Infarto del Miocardio/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/diagnóstico , Método Doble Ciego , Resultado del Tratamiento
12.
Artículo en Inglés | MEDLINE | ID: mdl-34457032

RESUMEN

We investigated the effects of Shenfu Injection (SFI) on HCN4 activity in bone marrow mesenchymal stem cells (BMSCs). The sample of BMSCs was divided into six groups: a control group, a high-dose SFI group (0.25 ml/ml), a middle-dose SFI group (0.1 ml/ml), a low-dose SFI group (0.05 ml/ml), an adenovirus-encoded control vector group, and an adenovirus-encoded HCN4 group. Cell ultrastructure was observed using a transmission electron microscope. Quantitative reverse transcription PCR (RT-qPCR) was performed to detect HCN4 expression, and HCN4 activity was detected using the whole-cell patch clamp technique. An enzyme-linked immunosorbent assay was performed to detect cAMP content. Application of flow cytometry confirmed that the isolated cells showed BMSC-like phenotypes. Differentiation of BMSCs in both the SFI and the adenovirus-encoding HCN4 groups occurred according to the cellular ultrastructure. Application of the whole-cell patch clamp technique revealed that SFI could activate the inward pacing current of BMSCs in a concentration-dependent manner. The RT-qPCR results showed that HCN4 expression was significantly higher in the high-dose SFI group than in the medium- and low-dose groups, whereas the cAMP content in the overexpressed HCN4 group decreased significantly; this content in the high-dose SFI group increased significantly. In conclusion, SFI promotes HCN4 activity in BMSCs, which could explain its treatment effect when administered to patients with cardiovascular diseases.

13.
Biomed Pharmacother ; 125: 110015, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32187958

RESUMEN

OBJECTIVE: To assess geniposide's effects in New Zealand rabbits with high-fat diet induced atherosclerosis and to explore the underpinning mechanisms. MATERIALS AND METHODS: Aorta histological changes were evaluated by intravenous ultrasound (IVUS) and H&E staining. Lipid accumulation in the aortic was quantified by Oil Red O staining. Then, RNA sequencing (RNA-seq) was carried out for detecting differentially expressed genes in rabbit high-fat diet induced atherosclerosis. The levels of the cytokines CRP, IL-1ß and IL-10 were determined by ELISA. Protein levels of iNOS and Arg-1 were assessed by Western blot and immunohistochemical staining. The mRNA expression levels of NR4A1, CD14, FOS, IL1A, iNOS and Arg-1 were detected by quantitative real-time PCR (qPCR). RESULTS: Geniposide markedly reduced the degree of atherosclerotic lesions in aorta tissues. RNA-seq and qPCR demonstrated that NR4A1, CD14, FOS and IL1A mRNA amounts were overtly increased in New Zealand rabbits with high-fat diet induced atherosclerosis. Moreover, geniposide reduced iNOS (M1 phenotype) mRNA and protein amounts as well as IL-1ß secretion, which were enhanced in New Zealand rabbits with high-fat diet induced atherosclerosis. Besides, Arg-1 (M2 phenotype) mRNA and protein amounts were significantly increased after geniposide treatment, as well as IL-10 secretion. CONCLUSION: These findings suggest that geniposide could inhibit the progression of and stabilize atherosclerotic plaques in rabbits by suppressing M1 macrophage polarization and promoting M2 polarization through the FOS/MAPK signaling pathway.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Iridoides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Placa Aterosclerótica/tratamiento farmacológico , Animales , Aterosclerosis/patología , Citocinas/metabolismo , Dieta Alta en Grasa , Progresión de la Enfermedad , Macrófagos/metabolismo , Masculino , Placa Aterosclerótica/patología , Proteínas Proto-Oncogénicas c-fos/genética , ARN Mensajero/metabolismo , Conejos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA