Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 879: 163036, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36972887

RESUMEN

Geophagy is common for free-range chickens, however, the relative bioavailability (RBA) of heavy metals in contaminated soils consumed by chickens has not fully investigated. In this work, chickens were fed diets increasingly spiked with a contaminated soil (Cd = 105, Pb = 4840 mg kg-1; 3, 5, 10, 20 and 30 % of overall feed by weight), or Cd/Pb reagent spikes (from CdCl2 or Pb(Ac)2), for 23 d. After the study period, chicken liver, kidney, femur and gizzard samples were analyzed for Cd and Pb concentrations, and organ/tissue metal concentrations were used to calculate Cd and Pb RBA. Linear dose response curves (DRCs) were established for both Cd/Pb reagents-spiked and soil-spiked treatments. Femur Cd concentrations of soil-spiked treatments were two times of Cd-spiked treatments with similar feed Cd levels, while feed spiked with Cd or Pb also resulted in elevated Pb or Cd concentrations in some organ/tissues. Metal RBA was calculated using three different methods. Most Cd and Pb RBA values were in the range 50-70 %, with the chicken gizzard as a potential endpoint for bioaccessible Cd and Pb. Cadmium and Pb bioavailability values can help with more precise estimation of Cd and Pb accumulation in chicken following heavy metal-contaminated soil ingestion, with overall results helping to protect human health.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Animales , Humanos , Cadmio/análisis , Plomo , Disponibilidad Biológica , Aves de Corral , Pollos , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Suelo
2.
Chemosphere ; 322: 138177, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36806811

RESUMEN

Atmospheric deposition of Cd, from anthropogenic activities, can be directly deposited onto and absorbed into wheat plants, yet, how foliar absorbed Cd is translocated in wheat plants is not well understood. A pot experiment investigated foliar Cd application on the accumulation and distribution of heavy metals in various wheat parts. Wheat was grown in a Cd/heavy metal contaminated soil, and from grain heading to the filling stage, 0, 10, 20, 30 and 40 mg kg-1 Cd solution was sprayed repeatedly on leaves (grain heads were covered). Foliar Cd application had no effect on grain yield and Cd concentration (3.01-3.51 mg kg-1 for all treatments), while increased flag leaf blade and sheath Cd concentrations by 1.06-2.77 and 0.00-0.66 times, respectively. Cadmium concentration in the center of the peduncle, from the 40 mg kg-1 Cd solution treatment, was 1.41 times that of the control (10.3 vs 7.30 mg kg-1). Foliar Cd application also increased Cd accumulation (concentration × mass) of the flag leaf blade and sheath. Rachis and grain Pb concentrations were reduced, while stem Pb concentration was increased by Cd application. Cadmium application negatively affected whole plant Ni accumulation and concentration of certain wheat parts; Ni absorption inhibition may have occurred in roots via the downward transport of Cd. Overall results implied that the predominant portion of foliar applied Cd was retained in leaves, while lesser portions migrated to peduncle or root and affected the absorption/distribution of other metals in wheat plants. These results are important for further discerning the mechanism of wheat grain Cd accumulation, especially when grain is raised in areas where atmospheric deposition of Cd (e.g., near smelting facilities) is an issue from an environmental and human health perspective.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Cadmio/análisis , Zinc/análisis , Triticum , Plomo , Contaminantes del Suelo/análisis , Grano Comestible/química , Suelo
3.
Artículo en Inglés | MEDLINE | ID: mdl-36141868

RESUMEN

The high salt-alkalinity of bauxite residue (BR) hinders plant growth and revegetation of bauxite residue disposal areas (BRDA), which cause serious potential environmental and ecological risks. Bioneutralization is a promising method for improving the properties of BR and plant colonization. In the present study, a strong saline-alkali tolerant bacteria (ZH-1) was isolated from aged BR and identified as Bacillus sp. The medium of ZH-1 was optimized by orthogonal tests, and ZH-1 could decrease the medium pH from 11.8 to 6.01 (agitated culture) and 6.48 (static culture) by secretion of citric acid, oxalic acid and tartaric acid. With the inoculation of ZH-1, the pH of BR decreased from 11.6 to 8.76, and the water-soluble salt in BR increased by 68.11%. ZH-1 also changed the aggregate size distribution of BR, the mechanical-stable aggregates and water-stable aggregates increased by 18.76% and 10.83%, respectively. At the same time, the stability of the aggregates obviously increased and the destruction rate decreased from 94.37% to 73.46%. In addition, the microbial biomass carbon increased from 425 to 2794 mg/kg with the inoculation of ZH-1. Bacterial community analysis revealed that Clostridia, Bacilli, Gammaproteobacteria, Betaproteobacteria and Alphaproteobacteria were the main classes in the naturalized BR, and the inoculation of ZH-1 increased the diversity of bacteria in the BR. Overall, ZH-1 has great potential for neutralization and improvement the properties of BR and may be greatly beneficial for the revegetation of BRDA.


Asunto(s)
Álcalis , Óxido de Aluminio , Óxido de Aluminio/química , Bacterias , Carbono , Ácido Oxálico , Plantas , Suelo/química , Agua
4.
Sci Total Environ ; 842: 156707, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35718186

RESUMEN

Non-ferrous metal smelting results in heterogenous spatial distribution of potentially toxic metals (PTM) near smelters. In this work, windowsill dusts were collected from smelting (SA) and urban (UJ) sub-areas of Jiyuan (a city affected by >70 years of Pb smelting) to investigate PTM source and bioaccessibility. The <10 µm fraction of dusts were analyzed for total and bioaccessible Pb, Cd, Cu and Zn concentrations; bioaccessibility was analyzed by a three-stage assay (i.e., lung phase, gastric phase and gastrointestinal phase) using artificial lysosomal fluid (ALF, L phase) followed by simulated gastric and gastrointestinal fluids (G and GI phases). This assay mimicked the movement of particles phagocytosed by alveolar macrophages in the respiratory system, then transported up the oropharynx and subsequently swallowed and transported into the digestive system. Zinc had greater bioaccessible concentrations in L and GI phases than other metals, and the mean L phase bioaccessible PTM concentrations in SA were greater than in UJ. The mean L + GI phase bioaccessible concentrations of Pb, Cd, Cu and Zn in SA were 280, 79, 124 and 1458 mg kg-1, while those in UJ were 215, 54, 116 and 598 mg kg-1, respectively. The L phase extracted 87.7 to 98.8 % of PTM within the L + GI assay. Lead had a lower L + GI bioaccessibility than Cd, Cu and Zn (70-76 % vs. 82-92 %). Higher tolerable Cd carcinogenic risks based on bioaccessibility were found in SA sub-area than in UJ while no carcinogenic or non-carcinogenic risk was found for other metals. Lead isotopic ratios indicated that both Pb ore and smelting bottom ash contributed to dust Pb accumulation in SA, while coal burning, lead ore, Pb smelting bottom ash and diesel engine exhaust contributed to dust Pb accumulation in UJ. Overall, results indicated heterogenous distribution of PTM source and bioaccessibility in the vicinity of Pb smelters.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio , China , Ceniza del Carbón , Polvo/análisis , Monitoreo del Ambiente , Humanos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , Zinc/análisis
5.
Environ Pollut ; 257: 113641, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31767230

RESUMEN

Cadmium, Cu, Pb and Zn concentrations and distribution in soil, wheat, and the potential for human heavy metal accumulation near a Pb smelting affected area were investigated. Farm land soil, wheat grain and scalp hair samples were collected from three villages (named QD, GF and BS) with increasing distance from a large Pb smelter in China. Soil Cd and Pb concentrations exceeded national standards 46-100% of the time, depending on location. Soil and wheat grain Cd, Cu, Pb and Zn concentrations increased as distance to the smelter decreased. Similarly, greater Cd, Cu and Pb concentrations were present in human scalp hair for those residents living closest to the smelter. Decreasing trends existed for hair-to-wheat grain ratios for Cd and Pb as distance to the smelter increased. Results suggest that as distance to the smelter decreases, human heavy metal absorption via the consumption of metal-contaminated food products (e.g., wheat) increases.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Suelo , Triticum , China , Cabello/química , Humanos , Metalurgia , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis , Triticum/química
6.
Environ Pollut ; 262: 114329, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32179229

RESUMEN

Cadmium is toxic to plants, easily reaching unsafe levels for animal and human consumption. A greenhouse experiment investigated the effect of foliar-applied Cd on the accumulation and distribution of Cd, Zn, Cu and Pb in wheat (Triticum aestivum) grown in heavy metal-contaminated soil. Cadmium solutions (0, 10, 20, 30 and 40 mg L-1) were repeatedly sprayed on entire aboveground wheat plants during heading stage to medium milk development stage. Plant sample analyses after harvest indicated that both the biomass yield and grain yield were negatively affected by Cd application (p < 0.05); compared to controls, leaf and grain Cd concentrations increased 187-547% and 26.3-91.8%, respectively. However, grain Cd accumulation (concentration × yield) was not affected by Cd treatments (p > 0.05). Stem, leaf and glume Zn concentrations increased by less than 31%, while grain Zn concentrations were negatively affected by Cd treatments (3.4-34.4% lower than the control). Grain Cu concentrations were also negatively affected by Cd treatments, while grain Pb concentrations were similar between treatments. The antagonistic effect of Cd on grain Zn accumulation may mainly be due to competition for transporters and binding compounds in wheat leaves and stems. Preventing excess Cd from entering aboveground plant tissues should lessen negative plant and potentially animal/human health effects.


Asunto(s)
Cadmio/análisis , Contaminantes del Suelo/análisis , Animales , Grano Comestible/química , Humanos , Plomo , Suelo , Triticum , Zinc/análisis
7.
Environ Pollut ; 266(Pt 3): 115152, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32702603

RESUMEN

Nano-silica as an important part of soil is an ideal carrier of passivator material. In this paper, nano-silica was modified by silane coupling agent containing mercapto group and iron (II) salt to afford an organic-inorganic hybrid containing -S-Fe-S functional group (coded as RNS-SFe) on the surface of nano-silica. Results demonstrate that the RNS-SFe nanoparticle has network-like spheroidal shape and a primary particle size is about 18.0 nm. The RNS-SFe hybrid as a potential immobilization agent for heavy metal in soil shows excellent performance for the remediation of the contaminated soil. Specifically, with a dosage of 3.0% (mass ratio) in the soil, it can immobilize bioavailable Pb, Cd, and As by 97.1%, 85.0%, and 80.1%, respectively. Namely, the RNS-SFe hybrid can transform the bioavailable Pb, Cd, and As into insoluble mercapto metal compounds (-S-Pb-S- and -S-Cd-S-) and less soluble iron arsenate (Fe3(AsO4)2, FeAsO4) precipitate on the surface of nano-silica particle, thereby reducing the toxicity and mobility of the toxic contaminant fractions. In the meantime, the immobilized products of the Pb, Cd and As fractions have good resistance against acid leaching. These results are contributive to the application of RNS-SFe for the remediation of multi-heavy metal-contaminated soils in field.


Asunto(s)
Arsénico/análisis , Restauración y Remediación Ambiental , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Cadmio/análisis , Compuestos Ferrosos , Silanos , Dióxido de Silicio , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA