Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Biol ; 33(11): 2187-2200.e6, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37167975

RESUMEN

General anesthesia (GA) is an unconscious state produced by anesthetic drugs, which act on neurons to cause overall suppression of neuronal activity in the brain. Recent studies have revealed that GA also substantially enhances the dynamics of microglia, the primary brain immune cells, with increased process motility and territory surveillance. However, whether microglia are actively involved in GA modulation remains unknown. Here, we report a previously unrecognized role for microglia engaging in multiple GA processes. We found that microglial ablation reduced the sensitivity of mice to anesthetics and substantially shortened duration of loss of righting reflex (LORR) or unconsciousness induced by multiple anesthetics, thereby promoting earlier emergence from GA. Microglial repopulation restored the regular anesthetic recovery, and chemogenetic activation of microglia prolonged the duration of LORR. In addition, anesthesia-accompanying analgesia and hypothermia were also attenuated after microglial depletion. Single-cell RNA sequencing analyses showed that anesthesia prominently affected the transcriptional levels of chemotaxis and migration-related genes in microglia. By pharmacologically targeting different microglial motility pathways, we found that blocking P2Y12 receptor (P2Y12R) reduced the duration of LORR of mice. Moreover, genetic ablation of P2Y12R in microglia also promoted quicker recovery in mice from anesthesia, verifying the importance of microglial P2Y12R in anesthetic regulation. Our work presents the first evidence that microglia actively participate in multiple processes of GA through P2Y12R-mediated signaling and expands the non-immune roles of microglia in the brain.


Asunto(s)
Anestésicos , Microglía , Ratones , Animales , Microglía/metabolismo , Anestésicos/metabolismo , Encéfalo , Anestesia General , Transducción de Señal/fisiología
2.
Neurosci Bull ; 38(11): 1383-1396, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35578093

RESUMEN

Neurons are highly interwoven to form intricate neural circuits that underlie the diverse functions of the brain. Dissecting the anatomical organization of neural circuits is key to deciphering how the brain processes information, produces thoughts, and instructs behaviors. Over the past decades, recombinant viral vectors have become the most commonly used tracing tools to define circuit architecture. In this review, we introduce the current categories of viral tools and their proper application in circuit tracing. We further discuss some advances in viral tracing strategy and prospective innovations of viral tools for future study.


Asunto(s)
Neuronas , Sinapsis , Sinapsis/fisiología , Estudios Prospectivos , Neuronas/fisiología , Vectores Genéticos , Encéfalo/fisiología , Vías Nerviosas/fisiología
3.
Nat Metab ; 4(12): 1756-1774, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36536134

RESUMEN

Microglia continuously survey the brain parenchyma and actively shift status following stimulation. These processes demand a unique bioenergetic programme; however, little is known about the metabolic determinants in microglia. By mining large datasets and generating transgenic tools, here we show that hexokinase 2 (HK2), the most active isozyme associated with mitochondrial membrane, is selectively expressed in microglia in the brain. Genetic ablation of HK2 reduced microglial glycolytic flux and energy production, suppressed microglial repopulation, and attenuated microglial surveillance and damage-triggered migration in male mice. HK2 elevation is prominent in immune-challenged or disease-associated microglia. In ischaemic stroke models, however, HK2 deletion promoted neuroinflammation and potentiated cerebral damages. The enhanced inflammatory responses after HK2 ablation in microglia are associated with aberrant mitochondrial function and reactive oxygen species accumulation. Our study demonstrates that HK2 gates both glycolytic flux and mitochondrial activity to shape microglial functions, changes of which contribute to metabolic abnormalities and maladaptive inflammation in brain diseases.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Ratones , Masculino , Animales , Microglía/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Mitocondrias/metabolismo
4.
STAR Protoc ; 2(3): 100787, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34485946

RESUMEN

The hypothalamic magnocellular neuroendocrine cells (MNCs) project to the posterior pituitary (PPi), regulating reproduction and fluid homeostasis. It has been challenging to selectively label and manipulate MNCs, as they are intermingled with parvocellular neuroendocrine cells projecting to the median eminence. Here, we provide a step-by-step protocol for specifically targeting the MNCs by infusing retrograde viral tracers into the PPi. When combined with optogenetics, chemogenetics, and transgenic animals, this approach allows cell-type-specific manipulation of MNCs in multiple sites for functional dissection. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021) and Tang et al. (2020).


Asunto(s)
Hipotálamo/citología , Células Neuroendocrinas , Optogenética/métodos , Neurohipófisis/citología , Animales , Animales Modificados Genéticamente , Masculino , Eminencia Media/citología , Red Nerviosa/citología , Red Nerviosa/fisiología , Células Neuroendocrinas/citología , Células Neuroendocrinas/fisiología , Ratas , Ratas Sprague-Dawley
5.
Neuron ; 109(2): 331-346.e7, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33212012

RESUMEN

The hypothalamo-neurohypophysial system (HNS), comprising hypothalamic magnocellular neuroendocrine cells (MNCs) and the neurohypophysis, plays a pivotal role in regulating reproduction and fluid homeostasis by releasing oxytocin and vasopressin into the bloodstream. However, its structure and contribution to the central actions of oxytocin and vasopressin remain incompletely understood. Using viral tracing and whole-brain imaging, we reconstruct the three-dimensional architecture of the HNS and observe collaterals of MNCs within the brain. By dual viral tracing, we further uncover that subsets of MNCs collaterally project to multiple extrahypothalamic regions. Selective activation of magnocellular oxytocin neurons promote peripheral oxytocin release and facilitate central oxytocin-mediated social interactions, whereas inhibition of these neurons elicit opposing effects. Our work reveals the previously unrecognized complexity of the HNS and provides structural and functional evidence for MNCs in coordinating both peripheral and central oxytocin-mediated actions, which will shed light on the mechanistic understanding of oxytocin-related psychiatric diseases.


Asunto(s)
Núcleo Basal de Meynert/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Neuronas/metabolismo , Oxitocina/metabolismo , Animales , Núcleo Basal de Meynert/química , Núcleo Basal de Meynert/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisario/química , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Masculino , Neuronas/química , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Oxitocina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA