Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925147

RESUMEN

Perovskite solar cells (PSCs) with an "inverted" architecture are a key pathway for commercializing this emerging photovoltaic technology due to the better power conversion efficiency (PCE) and operational stability as compared to the "normal" device structure. Specifically, PCEs of the inverted PSCs have exceeded 25% owing to the development of improved self-assembled molecules (SAMs)1-5 and passivation strategies6-8. Nevertheless, poor wettability and agglomerations of SAMs9-12 will cause interfacial losses, impeding further improvement in PCE and stability. Herein, we report on molecular hybrid at the buried interface in inverted PSCs by co-assembling a multiple carboxylic acid functionalized aromatic compound of 4,4',4''-nitrilotribenzoicacid (NA) with a popular SAM of [4-(3,6-dime-thyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted PSCs demonstrated a record-certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving the highest certified PCE for inverted mini-modules at 22.74% (aperture area: 11.1 cm2). Our device also maintained 96.1% of its initial PCE after more than 2,400 hours of 1-sun operation in ambient air.

2.
Small ; 20(12): e2307960, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946615

RESUMEN

The quality of two-step processed perovskites is significantly influenced by the distribution of organic amine salts. Especially, modulating the distribution of organic amine salts remains a grand challenge for sequential vapor-deposited perovskites due to the blocking effect of bottom compact PbI2. Herein, an ultrahigh humidity treatment strategy is developed to facilitate the diffusion of formamidinium iodide (FAI) from the top surface to the buried bottom interface on the sequential vapor-deposited bilayer structure. Both experimental and theoretical investigations elucidate the mechanism that moisture helps to i) create FAI diffusion channels by inducing a phase transition from α- to δ-phase in the perovskite, and ii) enhance the diffusivity of FAI by forming hydrogen bonds. This ultrahigh humidity treatment strategy enables the formation of a desired homogeneous and high-quality α-phase after annealing. As a result, a champion efficiency of 22.0% is achieved and 97.5% of its initial performance is maintained after aging for 1050 h under ambient air with a relative humidity of up to 80%. This FAI diffusion strategy provides new insights into the reproducible, scalable, and high-performance sequential vapor-deposited perovskite solar cells.

3.
Small ; : e2404058, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873880

RESUMEN

Blade-coating stands out as an alternative for fabricating scalable perovskite solar cells. However, it demands special control of the precursor composition regarding nucleation and crystallization and currently exhibits lower performance than the spin-coating process. It is mainly the resulting film morphology and excess lead iodide (PbI2) distribution that influences the optoelectronic properties. Here, the effectiveness of introducing N-Methyl-2-pyrrolidone (NMP) to regulate the structure of the perovskite layer and the redistribution of PbI2 is found. The introduction of NMP leads to the accumulation of excess PbI2, mainly on the top surface, reducing residual PbI2 at the perovskite buried interface. This not only facilitates the passivation of perovskite grain boundaries but also eliminates the potential degradation of the PbI2 triggered by light illumination in the perovskite buried interface. The optimized NMP-modified inverted perovskite solar cell achieves a champion efficiency of 24.5%, among the highest reported blade-coated perovskite solar cells. Furthermore, 13.68 cm2 blading perovskite solar modules are fabricated and demonstrate an efficiency of up to 20.4%. These findings underscore that with proper modulation of precursor composition, blade-coating can be a feasible and superior alternative for manufacturing high-quality perovskite films, paving the way for their large-scale applications in photovoltaic technology.

4.
Small ; 19(34): e2301110, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086142

RESUMEN

A scalable and low-cost deposition of high-quality charge transport layers and photoactive perovskite layers are the grand challenges for large-area and efficient perovskite solar modules and tandem cells. An inverted structure with an inorganic hole transport layer is expected for long-term stability. Among various hole transport materials, nickel oxide has been investigated for highly efficient and stable perovskite solar cells. However, the reported deposition methods are either difficult for large-scale conformal deposition or require a high vacuum process. Chemical bath deposition is supposed to realize a uniform, conformal, and scalable coating by a solution process. However, the conventional chemical bath deposition requires a high annealing temperature of over 400 °C. In this work, an amino-alcohol ligand-based controllable release and deposition of NiOX using chemical bath deposition with a low calcining temperature of 270 °C is developed. The uniform and conformal in-situ growth precursive films can be adjusted by tuning the ligand structure. The inverted structured perovskite solar cells and large-area solar modules reached a champion PCE of 22.03% and 19.03%, respectively. This study paves an efficient, low-temperature, and scalable chemical bath deposition route for large-area NiOX thin films for the scalable fabrication of highly efficient perovskite solar modules.

5.
Angew Chem Int Ed Engl ; 62(38): e202309292, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37539832

RESUMEN

The 2D/3D perovskite heterostructures have been widely investigated to enhance the efficiency and stability of perovskite solar cells (PSCs). However, rational manipulation of phase distribution and energy level alignment in such 2D/3D perovskite hybrids are still of great challenge. Herein, we successfully achieved spontaneous phase alignment of 2D/3D perovskite heterostructures by concurrently introducing both 2D perovskite component and organic halide additive. The graded phase distribution of 2D perovskites with different n values and 3D perovskites induced favorable energy band alignment across the perovskite film and boosted the charge transfer at the relevant heterointerfaces. Moreover, the 2D perovskite component also acted as a "band-aid" to simultaneously passivate the defects and release the residual tensile stress of perovskite films. Encouragingly, the blade-coated PSCs based on only ≈2 s in-situ fast annealed 2D/3D perovskite films with favorable energy funnels and toughened heterointerfaces achieved promising efficiencies of 22.5 %, accompanied by extended lifespan. To our knowledge, this is the highest reported efficiency for the PSCs fabricated with energy-saved thermal treatment just within a few seconds, which also outperformed those state-of-the-art annealing-free analogues. Such a two-second-in-situ-annealing technique could save the energy cost by up to 99.6 % during device fabrication, which will grant its low-coast implementation.

6.
J Am Chem Soc ; 141(8): 3515-3523, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30646682

RESUMEN

Increasing the stability of perovskites is essential for their integration in commercial photovoltaic devices. Halide mixing is suggested as a powerful strategy toward stable perovskite materials. However, the stabilizing effect of the halides critically depends on their distribution in the mixed compound, a topic that is currently under intense debate. Here we successfully determine the exact location of the I and Cl anions in the  CH3NH3PbBr3- yI y and CH3NH3PbBr3- zCl z mixed halide perovskite lattices and correlate it with the enhanced stability we find for the latter. By combining scanning tunneling microscopy and density functional theory, we predict that, for low ratios, iodine and chlorine incorporation have different effects on the electronic properties and stability of the CH3NH3PbBr3 perovskite material. In addition, we determine the optimal Cl incorporation ratio for stability increase without detrimental band gap modification, providing an important direction for the fabrication of stable perovskite devices. The increased material stability induced by chlorine incorporation is verified by performing photoelectron spectroscopy on a half-cell device architecture. Our findings provide an answer to the current debate on halide incorporation and demonstrate their direct influence on device stability.

7.
Small ; 12(18): 2419-24, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27002590

RESUMEN

A perovskite solar cell fiber is created with a high power conversion efficiency of 7.1% through a controllable deposition method. A combination of aligned TiO2 nanotubes, a uniform perovskite layer, and transparent aligned carbon nanotube sheet contributes to the high photovoltaic performance. It is flexible and stable, and can be woven into smart clothes for wearable applications.


Asunto(s)
Compuestos de Calcio , Óxidos , Energía Solar , Titanio , Vestuario , Microscopía Electrónica de Rastreo
8.
Small ; 11(9-10): 1150-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24889384

RESUMEN

A novel carbon nanomaterial with aligned carbon nanotubes (CNTs) chemically bonded to a single-layered, large area graphene sheet is designed and fabricated, showing remarkable electronic and electrocatalytic properties. When the carbon nanomaterial is used as a counter electrode, the resulting dye-sensitized solar cell exhibits ≈11% enhancement of energy conversion efficiency than aligned CNT array.

9.
Angew Chem Int Ed Engl ; 54(49): 14880-4, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26460095

RESUMEN

A new family of hierarchically helical carbon-nanotube fibers with many nano- and micro-scale channels has been synthesized. They demonstrate remarkable mechanical actuations in response to water and moisture. The water or moisture is first rapidly transported through the trunk micron-scale channels and then efficiently infiltrates into the interconnected capillary nanoscale channels, similar to the blood flow in our body. Therefore, rapid and large contraction and rotation of the fiber occurs with a high reversibility. These mechanically actuating fibers are promising for various applications, and smart windows and louvers have been investigated as two demonstrations.

10.
Chem Soc Rev ; 42(12): 5031-41, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23467786

RESUMEN

Photovoltaic devices in a wire format have recently attracted increasing attention as, compared with the conventional planar structure, they show unique and promising advantages. For instance, they are light-weight and can be easily woven into clothes or integrated into other structures, which enable applications in electronic textiles and various complex devices. In this tutorial review, the recent advancement in photovoltaic wires including both dye-sensitized and polymer solar cells are described. Two main architectures based on a single core-sheath fiber and twisted fibers are carefully illustrated with an emphasis on the comparison of various substrates which have been focused in past development. The current challenge including low energy conversion efficiency and low stability and future direction of the wire-shaped cell have been finally summarized.

11.
Angew Chem Int Ed Engl ; 53(39): 10425-8, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25047870

RESUMEN

Perovskite solar cells have triggered a rapid development of new photovoltaic devices because of high energy conversion efficiencies and their all-solid-state structures. To this end, they are particularly useful for various wearable and portable electronic devices. Perovskite solar cells with a flexible fiber structure were now prepared for the first time by continuously winding an aligned multiwalled carbon nanotube sheet electrode onto a fiber electrode; photoactive perovskite materials were incorporated in between them through a solution process. The fiber-shaped perovskite solar cell exhibits an energy conversion efficiency of 3.3%, which remained stable on bending. The perovskite solar cell fibers may be woven into electronic textiles for large-scale application by well-developed textile technologies.

12.
J Am Chem Soc ; 135(29): 10622-5, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23848197

RESUMEN

An organic thiolate/disulfide redox couple with low absorption in the visible region was developed for use in fabricating novel dye-sensitized photovoltaic wires with an aligned carbon nanotube (CNT) fiber as the counter electrode. These flexible wire devices achieved a maximal energy conversion efficiency of 7.33%, much higher than the value of 5.97% for the conventional I(-)/I3(-) redox couple. In addition, the aligned CNT fiber also greatly outperforms the conventional Pt counter electrode with a maximal efficiency of 2.06% based on the thiolate/disulfide redox couple.

13.
Nano Lett ; 12(5): 2568-72, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22500591

RESUMEN

Metal wires suffer from corrosion in fiber-shaped dye-sensitized solar cells (DSSCs). We report herein that stable, ultrastrong, and highly flexible aligned carbon nanotube fibers can be used not only as catalytic counter electrodes but also as conductive materials to support dye-loaded TiO(2) nanoparticles in DSSCs. The power conversion efficiency of this fiber solar cell can achieve 2.94%. These solar power fibers, exhibiting power conversion efficiency independent of incident light angle and cell length, can be woven into textiles via a convenient weaving technology.

14.
Angew Chem Int Ed Engl ; 52(29): 7545-8, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23716484

RESUMEN

Wired for light: Novel wire-shaped photovoltaic devices have been developed from graphene/Pt composite fibers. The high flexibility, mechanical strength, and electrical conductivity of graphene composite fibers resulted in a maximum energy conversion efficiency of 8.45 %, which is much higher than that of other wire-shaped photovoltaic devices.

15.
Adv Sci (Weinh) ; 10(19): e2300586, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37098640

RESUMEN

Stability and scalability are essential and urgent requirements for the commercialization of perovskite solar cells (PSCs), which are retarded by the non-ideal interface leading to non-radiative recombination and degradation. Extensive efforts are devoted to reducing the defects at the perovskite surface. However, the effects of the buried interface on the degradation and non-radiative recombination need to be further investigated. Herein, an omnibearing strategy to modify buried and top surfaces of perovskite film to reduce interfacial defects, by incorporating aluminum oxide (Al2 O3 ) as a dielectric layer and growth scaffolds (buried surface) and phenethylammonium bromide as a passivation layer (buried and top surfaces), is demonstrated. Consequently, the open-circuit voltage is extensively boosted from 1.02 to 1.14 V with the incorporation of Al2 O3 filling the voids between grains, resulting in dense morphology of buried interface and reduced recombination centers. Finally, the impressive efficiencies of 23.1% (0.1 cm2 ) and 22.4% (1 cm2 ) are achieved with superior stability, which remain 96% (0.1 cm2 ) and 89% (1 cm2 ) of its initial performance after 1200 (0.1 cm2 ) and 2500 h (1 cm2 ) illumination, respectively. The dual modification provides a universal method to reduce interfacial defects, revealing a promising prospect in developing high-performance PSCs and modules.

17.
Angew Chem Int Ed Engl ; 51(34): 8520-4, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22782938

RESUMEN

An azobenzene-containing liquid crystalline polymer/carbon nanotube composite strip was synthesized that shows rapid and reversible deformation under UV irradiation. The aligned nanotubes also provide the composite with much higher mechanical strength than pure liquid crystalline polymers and a very high electrical conductivity.

18.
ACS Appl Mater Interfaces ; 12(12): 14185-14194, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32134239

RESUMEN

Control of forward and inverse reactions between perovskites and precursor materials is key to attaining high-quality perovskite materials. Many techniques focus on synthesizing nanostructured CsPbX3 materials (e.g., nanowires) via a forward reaction (CsX + PbX2 → CsPbX3). However, low solubility of inorganic perovskites and complex phase transition make it difficult to realize the precise control of composition and length of nanowires using the conventional forward approach. Herein, we report the self-assembly inverse growth of CsPbBr3 micronanowires (MWs) (CsPb2Br5 → CsPbBr3 + PbBr2↑) by controlling phase transition from CsPb2Br5 to CsPbBr3. The two-dimensional (2D) structure of CsPb2Br5 serves as nucleation sites to induce initial CsPbBr3 MW growth. Also, phase transition allows crystal rearrangement and slows down crystal growth, which facilitates the MW growth of CsPbBr3 crystals along the 2D planes of CsPb2Br5. A CsPbBr3 MW photodetector constructed based on the inverse growth shows a high responsivity of 6.44 A W-1 and detectivity of ∼1012 Jones. Large grain size, high crystallinity, and large thickness can effectively alleviate decomposition/degradation of perovskites, which leads to storage stability for over 60 days in humid environment (relative humidity = 45%) and operational stability for over 3000 min under illumination (wavelength = 400 nm, light intensity = 20.06 mW cm-2).

19.
Adv Mater ; 31(11): e1804284, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30680833

RESUMEN

Perovskite solar cells (PSCs) have attracted great attention in the past few years due to their rapid increase in efficiency and low-cost fabrication. However, instability against thermal stress and humidity is a big issue hindering their commercialization and practical applications. Here, by combining thermally stable formamidinium-cesium-based perovskite and a moisture-resistant carbon electrode, successful fabrication of stable PSCs is reported, which maintain on average 77% of the initial value after being aged for 192 h under conditions of 85 °C and 85% relative humidity (the "double 85" aging condition) without encapsulation. However, the mismatch of energy levels at the interface between the perovskite and the carbon electrode limits charge collection and leads to poor device performance. To address this issue, a thin-layer of poly(ethylene oxide) (PEO) is introduced to achieve improved interfacial energy level alignment, which is verified by ultraviolet photoemission spectroscopy measurements. Indeed as a result, power conversion efficiency increases from 12.2% to 14.9% after suitable energy level modification by intentionally introducing a thin layer of PEO at the perovskite/carbon interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA