Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Cancer ; 23(1): 615, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400804

RESUMEN

BACKGROUND: Insulin resistance is an overlapping risk factor for both heart and breast cancer, while its interaction with cardiotoxicity in breast cancer (BC) patients is not clear. This study investigated the impact of insulin resistance on cardiac remodeling in patients with human epidermal growth factor receptor 2 (HER2)-positive BC during and after trastuzumab therapy in real-world clinical practice. METHODS: HER2-positive BC patients who received trastuzumab treatment between December 2012 and December 2017 were reviewed and 441 patients with baseline metabolic indices and serial echocardiographic measurements (baseline, 6, 12, and 18 months) after trastuzumab therapy initiation were included. Repeated measurement analysis of variance was used to evaluate temporal trends in multiparameter echocardiography. Linear mixed model was applied to further evaluate the role of insulin resistance in forementioned changes. Correlation of homeostasis model assessment-estimated insulin resistance (HOMA-IR) and triglyceride-glucose index (TyG) levels to changes in echocardiography parameters was explored. RESULTS: Of 441 patients (mean age 54 ± 10 [SD] years), 61.8% received anthracycline-based chemotherapy, 33.5% received left-sided radiotherapy, 46% received endocrine therapy. No symptomatic cardiac dysfunction was observed over the therapy course. A total of 19 (4.3%) participants experienced asymptomatic cancer therapy-related cardiac dysfunction (CTRCD), and the peak onset time was 12 months after the initiation of trastuzumab. Albeit relatively low CTRCD incidence, cardiac geometry remodeling, especially left atrial (LA) dilation over therapy was notable and was more severe in high HOMA-IR and TyG level groups (P < 0.01). Noteworthy, a partial reversibility of cardiac remodeling was observed with treatment cessation. Additionally, HOMA-IR level positively correlated to changes in LA diameter from baseline to 12 months (r = 0.178, P = 0.003). No significant association (all P > 0.10) was detected between HOMA-IR or TyG level and dynamic left ventricular parameter evaluation. Multivariate linear regression analysis demonstrated that higher HOMA-IR level was an independent determinant for LA enlargement in BC patients during anti-HER2 targeted therapy course after adjusting for confounding risk factors (P = 0.006). CONCLUSION: Insulin resistance was associated with left atrial adverse remodeling (LAAR) in HER2-positive BC patients that received standard trastuzumab therapy, indicating that insulin resistance could be a supplementation to baseline cardiovascular risk stratification proforma for HER2-targeted antitumor therapies.


Asunto(s)
Fibrilación Atrial , Neoplasias de la Mama , Cardiopatías , Resistencia a la Insulina , Adulto , Femenino , Humanos , Persona de Mediana Edad , Fibrilación Atrial/complicaciones , Neoplasias de la Mama/patología , Cardiotoxicidad/etiología , Cardiotoxicidad/tratamiento farmacológico , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapéutico , Remodelación Ventricular
2.
J Oncol Pharm Pract ; 29(1): 211-217, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35466809

RESUMEN

INTRODUCTION: Lung cancer is a major global health problem because of its high incidence and mortality. Targeted therapies have transformed treatment of driver-mutated metastatic non-small cell lung cancer (NSCLC). Nevertheless, recent studies demonstrated that cardiovascular disease (CVD) was the second leading cause of mortality in cancer survivors now, management of patients' cardiovascular health during the course of anticancer therapy has become a great challenge faced by the oncologists. Anticancer related cardiovascular (CV) complications are not limited to traditional chemotherapy, but are also increasingly recognized in targeted therapy. CASE REPORT: We present a case of pulmonary embolism (PE) and bradycardia in a 91-year-old NSCLC patient treated with crizotinib for a rare MET Y1003S mutation. To our knowledge, this is the second report to show antitumor response of crizotinib in lung cancer patients with such a rare mutation. However, the patient complained chest tightness and shortness of breath after a month of standard dose crizotinib therapy. Non-invasive examination revealed new onset bradycardia and PE. MANAGEMENT & OUTCOME: Such clinical manifestations were associated with targeted therapy-related CV toxicity, on which the emerging discipline cardio-oncology focused, and a multidisciplinary investigation and treatment was conducted. DISCUSSION: This case highlights the CV adverse events of novel therapies and the current challenges to be tackled in cardio-oncology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Embolia Pulmonar , Humanos , Anciano de 80 o más Años , Crizotinib/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación , Bradicardia/inducido químicamente , Embolia Pulmonar/inducido químicamente , Inhibidores de Proteínas Quinasas/efectos adversos
3.
Basic Res Cardiol ; 117(1): 18, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35380314

RESUMEN

Transketolase (Tkt), an enzyme in pentose phosphate pathway, has been reported to regulate genome instability and cell survival in cancers. Yet, the role of Tkt after myocardial ischemic injury remains to be elucidated. Label-free proteomics revealed dramatic elevation of Tkt in murine hearts after myocardial infarction (MI). Lentivirus-mediated Tkt knockdown ameliorated cardiomyocyte apoptosis and preserved the systolic function after myocardial ischemic injury. In contrast, Tkt overexpression led to the opposite effects. Inducible conditional cardiomyocyte Tkt-knockout mice were generated, and cardiomyocyte-expressed Tkt was found to play an intrinsic role in the ischemic heart failure of these model mice. Furthermore, through luciferase assay and chromatin immunoprecipitation, Tkt was shown to be a direct target of transcription factor Krüppel-like factor 5 (Klf5). In cardiomyocytes under ischemic stress, Tkt redistributed into the nucleus. By binding with the full-length poly(ADP-ribose) polymerase 1 (Parp1), facilitating its cleavage, and activating apoptosis inducible factor (Aif) subsequently, nuclear Tkt demonstrated its non-metabolic functions. Overall, our study confirmed that elevated nuclear Tkt plays a noncanonical role in promoting cardiomyocyte apoptosis via the cleaved Parp1/Aif pathway, leading to the deterioration of cardiac dysfunction.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Transcetolasa , Animales , Apoptosis , Factor Inductor de la Apoptosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Transcetolasa/metabolismo
4.
J Cardiovasc Pharmacol ; 77(5): 578-585, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33760799

RESUMEN

ABSTRACT: Coronary artery disease (CAD) and associated comorbidities such as heart failure (HF) remain the leading cause of morbidity and mortality worldwide attributed to, at least partially, the lack of biomarkers for efficient disease diagnosis. Here, we evaluated the diagnostic potential of serum peptidoglycan recognition protein 1 (PGLYRP1), an important component of the innate immunity and inflammation system, for both CAD and HF. A machine-learning method (random forest) was used to evaluate the clinical utility of circulating PGLYRP1 for diagnosis of CAD and HF in a total of 370 individuals. Causal links of chronic serum PGLYRP1 elevation to both diseases were further explored in ApoE-/- mice. The serum levels of PGLYRP1 were significantly higher in individuals with either chronic CAD or acute coronary syndrome than those in those without coronary artery stenosis (the control group) and even more pronounced in CAD individuals with concomitant HF. Our random forest classifier revealed that this protein performed better than other recommended clinical indicators in distinguishing the CAD from the control individuals. In addition, this protein associates more with the biomarkers of HF including left ventricular ejection fraction than inflammation. Notably, our mice experiment indicated that long-term treatment with recombinant PGLYRP1 could significantly impair the cardiovascular system as reflected from both increased atherogenic lesions and reduced fractional shortening of the left ventricle. Our findings, therefore, supported the circulating levels of PGLYRP1 as a valuable biomarker for both CAD and HF.


Asunto(s)
Síndrome Coronario Agudo/sangre , Enfermedad de la Arteria Coronaria/sangre , Estenosis Coronaria/sangre , Citocinas/sangre , Insuficiencia Cardíaca/sangre , Síndrome Coronario Agudo/diagnóstico por imagen , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/prevención & control , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/prevención & control , Biomarcadores/sangre , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Estudios Transversales , Citocinas/farmacología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/diagnóstico , Humanos , Aprendizaje Automático , Masculino , Ratones Noqueados para ApoE , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Regulación hacia Arriba
5.
Adv Mater ; 35(48): e2302801, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37589156

RESUMEN

The lesion core is the area with the most serious injury and vigorous repair. Existing nanocarriers are difficult to break through the targeted delivery to the lesion core for precise treatment in the intracellular and extracellular microenvironment. Herein, a cellular membrane-engineered nanovesicle (CMEV) with a hierarchical structure is constructed using the double emulsion-extrusion method by integrating a neutrophil membrane, functional antibody, and gelled drug-loaded core as a three-stage booster to target the lesion core and deliver catestatin (CST), a small therapeutic peptide, for ischemic cardiomyopathy therapy. By coating the neutrophil membrane outside the shell, CMEV is endowed with the function of neutrophil-like migration to achieve the first stage of tissue targeting. Based on the specific anchoring to injured myocardium, a myosin light chain 3 (MLC3) antibody is embedded to fulfill the second stage of CMEV accumulation in the lesion core. The gelled core containing CST-sodium alginate (NaAlg) with a pH-responsive shell is prepared by ionic cross-linking to accomplish the third stage of precise CST administration. Triggered by the microenvironment, NaAlg electrostatically adheres to the lesion core for sustained release, enhancing the efficacy of CST in improving cardiomyocyte apoptosis, excessive fibrosis, macrophage polarization, and angiogenesis. Thus, the "three-stage booster" nanovesicle significantly ameliorates cardiac function and adverse remodeling to treat ischemic cardiomyopathy.


Asunto(s)
Apoptosis , Cardiomiopatías , Humanos , Membrana Celular , Péptidos
6.
EMBO Mol Med ; 15(6): e16928, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37155563

RESUMEN

This study aimed to identify microbial signatures that contribute to the shared etiologies between chronic heart failure (CHF), type 2 diabetes, and chronic kidney disease. The serum levels of 151 microbial metabolites were measured in 260 individuals from the Risk Evaluation and Management of heart failure cohort, and it was found that those metabolites varied by an order of 105 fold. Out of 96 metabolites associated with the three cardiometabolic diseases, most were validated in two geographically independent cohorts. In all three cohorts, 16 metabolites including imidazole propionate (ImP) consistently showed significant differences. Notably, baseline ImP levels were three times higher in the Chinese compared with the Swedish cohorts and increased by 1.1-1.6 fold with each additional CHF comorbidity in the Chinese population. Cellular experiments further supported a causal link between ImP and distinct CHF relevant phenotypes. Additionally, key microbial metabolite-based risk scores were superior in CHF prognosis than the traditional Framingham or Get with the Guidelines-Heart Failure risk scores. Interactive visualization of these specific metabolite-disease links is available on our omics data server (https://omicsdata.org/Apps/REM-HF/).


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Comorbilidad , Enfermedad Crónica , Factores de Riesgo , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/epidemiología
7.
J Am Heart Assoc ; 12(9): e029470, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119063

RESUMEN

Background Catestatin has been reported as a pleiotropic cardioprotective peptide. Heart failure with preserved ejection fraction (HFpEF) was considered a heterogeneous syndrome with a complex cause. We sought to investigate the role of catestatin in HFpEF and diastolic dysfunction. METHODS AND RESULTS Administration of recombinant catestatin (1.5 mg/kg/d) improved diastolic dysfunction and left ventricular chamber stiffness in transverse aortic constriction mice with deoxycorticosterone acetate pellet implantation, as reflected by Doppler tissue imaging and pressure-volume loop catheter. Less cardiac hypertrophy and myocardial fibrosis was observed, and transcriptomic analysis revealed downregulation of mitochondrial electron transport chain components after catestatin treatment. Catestatin reversed mitochondrial structural and respiratory chain component abnormality, decreased mitochondrial proton leak, and reactive oxygen species generation in myocardium. Excessive oxidative stress induced by Ru360 abolished catestatin treatment effects on HFpEF-like cardiomyocytes in vitro, indicating the beneficial role of catestatin in HFpEF as a mitochondrial ETC modulator. The serum concentration of catestatin was tested among 81 patients with HFpEF and 76 non-heart failure controls. Compared with control subjects, serum catestatin concentration was higher in patients with HFpEF and positively correlated with E velocity to mitral annular e' velocity ratio, indicating a feedback compensation role of catestatin in HFpEF. Conclusions Catestatin protects against diastolic dysfunction in HFpEF through attenuating mitochondrial electron transport chain-derived reactive oxygen species generation. Serum catestatin concentration is elevated in patients with HFpEF, probably as a relatively insufficient but self-compensatory mechanism.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Ratones , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Volumen Sistólico/fisiología , Especies Reactivas de Oxígeno , Miocardio , Función Ventricular Izquierda/fisiología , Disfunción Ventricular Izquierda/prevención & control
8.
Arthritis Res Ther ; 25(1): 141, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542301

RESUMEN

OBJECTIVES: The HFA-PEFF score has been validated to hold great diagnostic and prognostic utility for heart failure with preserved ejection fraction (HFpEF). Idiopathic inflammatory myopathy (IIM) is recognized as one of the potential etiologies underlying HFpEF. Here, we intended to investigate the real prevalence of HFpEF in IIM via the HFA-PEFF score and explore the prognostic value of this score. METHODS: Two hundred twenty IIM patients were enrolled for assessment. The cohort was divided into low, intermediate and high tertiles of the HFA-PEFF score. Spearman's correlation analysis was used to explore the association between the score and disease activity. Chi-square test was applied to investigate the distribution discrepancy of HFA-PEFF tertiles among patients with different myositis-specific antibodies (MSAs) or myositis-associated antibodies (MAAs). Univariate and multivariate ordinal regression analyses were performed to screen risk factors for high HFA-PEFF scores. Survival curves were obtained using the Kaplan-Meier method and log-rank tests. RESULTS: In total, 79 (35.9%), 107 (48.6%) and 34 (15.5%) patients were rated low, intermediate and high probability of HFpEF, respectively. The HFA-PEFF score correlated well with disease activity. Patients with positive AMA-M2 scored higher in the HFA-PEFF score (p = 0.011). During follow-up, patients with positive AMA-M2 or anti-SRP antibody developed an inclination towards concentric hypertrophy on echocardiography. Additionally, palpitation symptom, AMA-M2 positivity and elevated serum levels of LDH, cTnI were independent risk factors for high HFA-PEFF scores. Finally, a high-tertile HFA-PEFF score was related to lower overall survival rate (p < 0.001). Patients with positive AMA-M2 had poorer outcomes (p = 0.002). CONCLUSION: HFpEF was prevailing in IIM patients according to the HFA-PEFF score. The HFA-PEFF score correlated well with disease activity and held significant prognostic value. Patients with AMA-M2 antibody were prone to have poor outcomes.


Asunto(s)
Insuficiencia Cardíaca , Miositis , Humanos , Insuficiencia Cardíaca/diagnóstico , Volumen Sistólico , Pronóstico , Anticuerpos , Miositis/diagnóstico , Algoritmos
9.
Front Cardiovasc Med ; 8: 725399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604354

RESUMEN

Background: The feasibility of spironolactone withdrawal in dilated cardiomyopathy patients with improved ejection fraction remains unknown. This study sought to determine whether spironolactone can be withdrawn safely in this circumstance. Methods: Consecutive patients with idiopathic dilated cardiomyopathy and prescribed spironolactone at discharge were included in this prospective, observational cohort using the Risk Evaluation and Management in Heart Failure Trial (NCT02998788) database. Those patients who experienced an absolute left ventricular ejection fraction (LVEF) improvement ≥10% and a second measurement of LVEF >40% would choose whether to continue spironolactone therapy and be included in final analysis. The primary endpoint was dilated cardiomyopathy relapse within 12 months, defined as a more than 10% reduction in LVEF, a 15% or greater increase in LVESVi, a 2-fold rise in NT-proBNP, or clinical signs of heart failure. Results: Seventy patients achieved an ejection fraction improvement and were included in the final analysis, of whom 30 chose to continue spironolactone and 40 decided to withdraw. In primary endpoint analysis, 23 (58%) patients from the withdrawal group and 4 (13%) patients from the continuation group relapsed (relative risk for relapse: 4.31; 95% CI: 1.67-11.11; p < 0.001). Patients from the withdrawal group experienced more symptom aggravation than the continuation group. No secondary safety endpoint was recorded. Improvements in cardiac structure parameters were no longer observed after spironolactone withdrawal, while improvements persisted in continuation group. Conclusions: Most dilated cardiomyopathy patients with improved ejection fraction will relapse after spironolactone withdrawal. These results should be weighed before spironolactone withdrawal was attempted.

10.
NPJ Regen Med ; 6(1): 44, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376690

RESUMEN

Myocardial fibrosis and ventricular remodeling were the key pathology factors causing undesirable consequence after myocardial infarction. However, an efficient therapeutic method remains unclear, partly due to difficulty in continuously preventing neurohormonal overactivation and potential disadvantages of cell therapy for clinical practice. In this study, a rhACE2-electrospun fibrous patch with sustained releasing of rhACE2 to shape an induction transformation niche in situ was introduced, through micro-sol electrospinning technologies. A durable releasing pattern of rhACE2 encapsulated in hyaluronic acid (HA)-poly(L-lactic acid) (PLLA) core-shell structure was observed. By multiple in vitro studies, the rhACE2 patch demonstrated effectiveness in reducing cardiomyocytes apoptosis under hypoxia stress and inhibiting cardiac fibroblasts proliferation, which gave evidence for its in vivo efficacy. For striking mice myocardial infarction experiments, a successful prevention of adverse ventricular remodeling has been demonstrated, reflecting by improved ejection fraction, normal ventricle structure and less fibrosis. The rhACE2 patch niche showed clear superiority in long term function and structure preservation after ischemia compared with intramyocardial injection. Thus, the micro-sol electrospun rhACE2 fibrous patch niche was proved to be efficient, cost-effective and easy-to-use in preventing ventricular adverse remodeling.

11.
Front Cardiovasc Med ; 7: 613123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33365331

RESUMEN

Aims: There is a high incidence of heart failure with preserved ejection fraction (HFpEF), but the options of treatment are limited. A new animal model of HFpEF is urgently needed for in-depth research on HFpEF. Signal transducer and activator of transcription 3 (STAT3) may affect the passive stiffness of myocardium, which determines cardiac diastolic function. We hypothesized that cardiomyocyte-specific deletion of STAT3 increases cardiac passive stiffness, which results the murine features of HFpEF. Methods and Results: Cardiomyocyte-specific deletion of STAT3 (STAT3cKO) mice was generated by the Cre/FLOXp method. The STAT3cKO mice showed heavier cardiac fibrosis and cardiac hypertrophy comparing with wild-type (WT) mice. Furthermore, STAT3cKO mice showed increased serum brain natriuretic peptide (BNP) level, and growth stimulation expressed gene 2 (ST2) level. Other indicators reflecting cardiac passive stiffness and diastolic function, including end diastolic pressure volume relation, MV A value, MV E value, E/A and E/E' had different fold changes. All these changes were accompanied by decreasing levels of protein kinase G (PKG). Bioinformatic analysis of STAT3cKO mice hearts suggested cGMP-PKG signaling pathway might participate in the pathogenesis of HFpEF by means of adjusting different biological functions. Conclusions: Cardiomyocyte-specific deletion of STAT3 results in a murine HFpEF model which imitates the clinical characteristics partly by affecting cardiac PKG levels. Better understanding of the factors influencing HFpEF may finally provided innovative therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA