RESUMEN
Loss of LKB1 is associated with increased metastasis and poor prognosis in lung cancer, but the development of targeted agents is in its infancy. Here we report that a glutaminolytic enzyme, glutamate dehydrogenase 1 (GDH1), upregulated upon detachment via pleomorphic adenoma gene 1 (PLAG1), provides anti-anoikis and pro-metastatic signals in LKB1-deficient lung cancer. Mechanistically, the GDH1 product α-KG activates CamKK2 by enhancing its substrate AMPK binding, which contributes to energy production that confers anoikis resistance. The effect of GDH1 on AMPK is evident in LKB1-deficient lung cancer, where AMPK activation predominantly depends on CamKK2. Targeting GDH1 with R162 attenuated tumor metastasis in patient-derived xenograft model and correlation studies in lung cancer patients further validated the clinical relevance of our finding. Our study provides insight into the molecular mechanism by which GDH1-mediated metabolic reprogramming of glutaminolysis mediates lung cancer metastasis and offers a therapeutic strategy for patients with LKB1-deficient lung cancer.
Asunto(s)
Anoicis/fisiología , Proteínas de Unión al ADN/metabolismo , Glutamato Deshidrogenasa/metabolismo , Neoplasias Pulmonares/patología , Proteínas Serina-Treonina Quinasas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Células A549 , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Activación Enzimática/fisiología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Metástasis de la Neoplasia/patología , Trasplante de Neoplasias , Trasplante HeterólogoRESUMEN
A feedback inhibition effect of high autoinducer levels on metabolite secretion in Chromobacterium subtsugae (C. subtsugae) was evidenced by in situ spatiotemporal surface-enhanced Raman spectroscopy (SERS) profiling. The hierarchical hydrophobic plasmonic array in agar medium is structured by oil/water/oil (OL/W/OH) triphasic interfacial self-assembly. The hydrophobic layer acts as a "door curtain" to selectively permit adsorption of a quorum sensing (QS)-regulated fat-soluble metabolite, i.e., violacein (Vio), and significantly blocks nonspecific adsorption of water-soluble proteins, etc. The SERS profiling clearly evidences that the diffusion of N-hexanoyl-l-homoserine lactone (C6-HSL) in agar medium quickly triggers the initial synthesis of Vio in C. subtsugae CV026 but surprisingly inhibits the intrinsic synthesis of Vio in C. subtsugae ATCC31532. The latter negative response might be related to the VioS repressor of ATCC31532, which negatively controls violacein production without influencing the expression of the CviI/R QS system. Moreover, two sender-receiver systems are constructed by separately coculturing CV026 or ATCC31532 with Hafnia alvei H4 that secretes large amounts of C6-HSL. Expectedly, the cocultivation similarly triggers the initial synthesis of Vio in CV026 but seems to have a quite weak negative effect on the intrinsic synthesis in ATCC31532. In fact, the negative regulation in ATCC31532 might be affected by a diffusion-dependent concentration effect. The H4 growth and its secretion of C6-HSL are a slow and continuous process, thereby avoiding the gathering of local high concentrations. Overall, our study put forward an in situ SERS strategy as an alternative to traditional bioluminescent tools for highly sensitively analyzing the spatiotemporal communication and cooperation in live microbial colonies.
Asunto(s)
Bacterias , Percepción de Quorum , Agar , Chromobacterium/fisiologíaRESUMEN
BACKGROUND: The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking. RESULTS: In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside. CONCLUSIONS: These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.
Asunto(s)
Frutas , Ligustrum , Metaboloma , Transcriptoma , Frutas/genética , Frutas/metabolismo , Frutas/química , Ligustrum/genética , Ligustrum/metabolismo , Ligustrum/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las PlantasRESUMEN
Insecticide resistance poses a significant challenge in managing generalist herbivores such as the tobacco cutworm (TCW), Spodoptera litura. This study investigates the potential risks associated with using the novel diamide insecticide tetraniliprole to control TCW. A tetraniliprole-resistant strain was developed through twelve generations of laboratory selection, indicating an intermediate risk of resistance development. Field monitoring in China revealed a significant incidence of resistance, particularly in the Nanchang (NC) population (>100-fold). Tetraniliprole showed moderate to high cross-resistance to multiple insecticides and was autosomally inherited with incomplete dominance, controlled by multiple genes, some of which belong to the cytochrome P450 family associated with enhanced detoxification. Life table studies indicated transgenerational hormesis, stimulating TCW female fecundity and increasing population net reproduction rates (R0). These findings suggest a potential for pest resurgence under tetraniliprole use. The integrated risk assessment provides a basis for the sustainable management of TCW using tetraniliprole.
Asunto(s)
Insecticidas , Spodoptera , Animales , Medición de Riesgo , Spodoptera/efectos de los fármacos , Insecticidas/toxicidad , Resistencia a los Insecticidas/genética , Herbivoria , China , Femenino , Larva/efectos de los fármacosRESUMEN
Tuta absoluta is one of the most destructive and invasive insect pests throughout the world. It feeds on numerous solanaceous plant species and has developed resistance to most types of popular insecticides. Tetraniliprole is a novel diamide chemical agent that acts as a modulator of the ryanodine receptor. To establish T. absoluta susceptibility to tetraniliprole and to understand potential mechanisms of resistance, we monitored 18 field populations of T. absoluta collected from northern China. One field-evolved resistant population, Huailai (HL), showed moderate resistance to tetraniliprole (36.2-fold) in comparison with susceptible strain YN-S. Assays of cross-resistance, synergism, metabolic enzyme activity, and inheritance of resistance were performed with YN-S strain and HL population. The latter displayed 12.2- and 6.7-fold cross-resistance to chlorantraniliprole and flubendiamide, respectively, but little cross-resistance to broflanilide (1.6-fold), spinosad (2.1-fold), metaflumizone (1.5-fold), or indoxacarb (2.8-fold). Genetic analyses revealed that tetraniliprole resistance in HL population was autosomal, incompletely dominant, and polygenic. Piperonyl butoxide was found to significantly increase tetraniliprole toxicity, and enzymatic activities of P450 monooxygenase and glutathione S-transferase were significantly higher in HL than YN-S population. These results enhance our knowledge of the inheritance and mechanism of tetraniliprole resistance, enabling future optimization of resistance management strategies.
Asunto(s)
Resistencia a los Insecticidas , Insecticidas , Mariposas Nocturnas , Animales , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , China , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Larva/efectos de los fármacos , Larva/genéticaRESUMEN
Bemisia tabaci is one of the most destructive agricultural insect pests around the world, and it has developed high levels of resistance to most pesticides. Dimpropyridaz, a novel insecticide developed by BASF, displays excellent activity against piercing-sucking insect pests. In this study, baseline of susceptibility showed all tested field populations of B. tabaci are susceptible to dimpropyridaz. After continuous selection with dimpropyridaz in the lab, a B. tabaci strain (F12) developed 2.2-fold higher level of resistance compared with a susceptible MED-S strain, and the realized heritability (h2) was estimated as 0.0518. The F12 strain displayed little cross-resistance to afidopyropen, cyantraniliprole, sulfoxaflor, or abamectin, and significantly increased activity of cytochrome P450 monooxygenase (P450). The fitness cost of dimpropyridaz resistance was evident in F12 strain, which had a relative fitness of 0.95 and significantly lower fecundity per female compared with MED-S strain. Taken together, B. tabaci displays high susceptibility to dimpropyridaz in the field, and low risk of developing resistance to dimpropyridaz under successive selection pressure. Little cross-resistance to popular insecticides was found, and fitness cost associated dimpropyridaz resistance was observed. Higher activity of cytochrome P450 in the F12 strain, may be involved in the process of detoxifying dimpropyridaz in whitefly.
Asunto(s)
Hemípteros , Resistencia a los Insecticidas , Insecticidas , Piridazinas , Animales , Hemípteros/efectos de los fármacos , Hemípteros/genética , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Piridazinas/farmacología , China , Pirazoles/farmacología , Femenino , Medición de Riesgo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismoRESUMEN
Chemical signals play a central role in mediating insect feeding and reproductive behavior, and serve as the primary drivers of the insect-plant interactions. The detection of chemical signals, particularly host plant volatiles, relies heavily on the insect's complex olfactory system. The Bemisia tabaci cryptic species complex is a group of globally important whitefly pests of agricultural and ornamental crops that have a wide range of host plants, but the molecular mechanism of their host plant recognition is not yet clear. In this study, the odorant coreceptor gene of the Whitefly MEAM1 cryptic species (BtOrco) was cloned. The coding sequence of BtOrco was 1413 bp in length, with seven transmembrane structural domains, and it was expressed primarily in the heads of both male and female adult whiteflies, rather than in other tissues. Knockdown of BtOrco using transgenic plant-mediated RNAi technology significantly inhibited the foraging behavior of whiteflies. This inhibition was manifested as a reduced percentage of whiteflies responding to the host plant and a prolonged foraging period. Moreover, there was a substantial suppression of egg-laying activity among adult female whiteflies. These results indicate that BtOrco has the potential to be used as a target for the design of novel active compounds for the development of environmentally friendly whitefly control strategies.
Asunto(s)
Hemípteros , Animales , Femenino , Hemípteros/genética , Oviposición , Plantas Modificadas Genéticamente , Interferencia de ARNRESUMEN
Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.
Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hemípteros , Proteínas de Insectos , Resistencia a los Insecticidas , Insecticidas , Ivermectina/análogos & derivados , Pirazoles , Piridazinas , ortoaminobenzoatos , Animales , Hemípteros/efectos de los fármacos , Hemípteros/genética , Insecticidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Piridazinas/farmacología , Resistencia a los Insecticidas/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Pirazoles/farmacología , Filogenia , Neonicotinoides/farmacología , Técnicas de Silenciamiento del Gen , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Ivermectina/farmacología , Ivermectina/toxicidadRESUMEN
Up to now, highly efficient narrowband thermally activated delayed fluorescence (TADF) molecules constructed by oxygen-bridged boron with an enhancing multiple resonance (MR) effect have been in urgent demand for solid-state lighting and full-color displays. In this work, a novel MR-TADF molecule, BNBO, constructed by the oxygen-bridged boron unit and boron-nitrogen core skeleton as an electron-donating moiety, is successfully designed and synthesized via a facile one-step synthesis. Based on BNBO as an efficient green emitter, the organic light-emitting diode (OLED) shows a sharp emission peak of 508 nm with a full-width at half-maximum (FWHM) of 36 nm and realizes quite high peak efficiency values, including an external quantum efficiency (EQEmax) of 24.3% and a power efficiency (PEmax) of 62.3 lm/W. BNBO possesses the intramolecular charge transfer (ICT) property of donor-acceptor (D-A) materials and multiple resonance characteristics, which provide a simple strategy for narrowband oxygen-boron materials.
RESUMEN
The racemization of chiral organic compounds is a common chemical phenomenon. However, it often poses configurational-stability issues to the application of this class of compounds. Achieving chiral organic compounds without the risk of racemization is fascinating, but it is challenging due to a lack of strategies. Here, we reveal the cove-regions bridging strategy for achieving persistently chiral multi-helicenes (incapable of racemization), based on the synthesized proof-of-concept double hetero[4]helicenes featuring macrocycle structures with a small 3D cavity. Additionally, we demonstrate that the strategy is also effective in tuning the electronic structures of multi-helicenes, resulting in a conversion from luminescence silence into thermally activated delayed fluorescence (TADF) for the present system. Furthermore, red circularly polarized TADF based on small double [4]helicene systems is achieved for the first time using this strategy. The disclosed cove-regions bridging strategy provides an opportunity to modulate the electronic structures and luminescent properties of multi-helicenes without concern for racemization, thus significantly enhancing the structural and property diversity of multi-helicenes for various applications.
RESUMEN
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with narrow emission spectra have garnered significant attention in future organic light-emitting diode (OLED) displays. However, current C=O/N-embedded MR-TADF systems still lack satisfactory performance in terms of electroluminescence bandwidths and external quantum efficiencies (EQEs). In this study, a C=O/N-embedded green MR-TADF emitter, featuring two acridone units incorporated in a sterically protected 11-ring fused core skeleton, is successfully synthesized through finely controlling the reaction selectivity. The superior combination of multiple intramolecular fusion and steric wrapping strategies in the design of the emitter not only imparts an extremely narrow emission spectrum and a high fluorescence quantum yield to the emitter but also mitigates aggregation-induced spectral broadening and fluorescence quenching. Therefore, the emitter exhibits leading green OLED performance among C=O/N-based MR-TADF systems, achieving an EQE of up to 37.2 %, a full width at half maximum of merely 0.11â eV (24â nm), and a Commission Internationale de l'Éclairage coordinate of (0.20, 0.73). This study marks a significant advance in the realization of ideal C=O/N-based MR-TADF emitters and holds profound implications for the design and synthesis of other MR-TADF systems.
RESUMEN
Despite the proliferation of multiple resonance (MR) materials in the blue to green spectral ranges, red MR emitters remain scarce in the literature, an area that certainly warrants attention for future applications. Here, through a clever application of classic Clar's aromatic π-sextet rule, we triumphantly constructed the first red MR emitter by substituting the conventional benzene ring core with anthracene (fewer π-sextets). Theoretical studies indicate that the quantity of π-sextets ultimately determines the optical bandgap of a molecule, rather than the number of fused benzene rings. Benefiting from the high photoluminescence quantum yield of ~94% and horizontal dipole ratio of ~90%, the corresponding narrowband red (luminescence wavelength: 608 nm) organic light-emitting diode shows a high external quantum efficiency of 27.3%, with only a slight decrease of 3.7% at an elevated luminance level of 100,000 cd/m2.
RESUMEN
Aiming at the fabrication of circularly polarized organic light-emitting diodes (CP-OLEDs) with high dissymmetry factors (gEL) and color purity through the employment of novel chiral source, topologically chiral [2]catenanes were first utilized as the key chiral skeleton to construct novel multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters. Impressively, the efficient chirality induction and unique switchable feature of topologically chiral [2]catenane not only lead to a high |gPL| value up to 1.6 × 10-2 but also facilitate in situ dynamic switching of the full-width at half-maximum (FWHM) and circularly polarized luminescence (CPL). Furthermore, the solution-processed CP-OLEDs based on the resultant topologically chiral emitters exhibit reveal narrow FWHM of 36 nm, maximum external quantum efficiency of 17.6%, and CPEL with |gEL| of 2.1 × 10-3. This study demonstrates the successful construction of the first CP-MR-TADF emitters based on topological chirality with the highest |gPL| among the reported CP-MR-TADF emitters and excellent device performance to the best of our knowledge. Moreover, it endowed the MR-TADF emitter with distinctive switchable CPL performances, thus providing a novel design strategy as well as a promising platform for developing intelligent CP-OLEDs.
RESUMEN
Surface-enhanced Raman spectroscopy (SERS) with ultrasensitive vibrational fingerprints enables quick identification and trace detection of various kinds of molecules. But proteins usually have low Raman cross sections and are difficult to generate recognizable signals in direct SERS detection. Recently, nucleic acid-peptide conjugates are emerging with great potential in structuring, assembling, catalyzing, sensing, etc., and the coupling of aptamers further enables superior biological recognition and programmability. Here, we develop the aptamer-peptide conjugates as a new kind of SERS probe for direct high-specific profiling abnormal protein levels in cancer patients. The aptamer conjugated with glutathione (GSH) functions as both the recognition element and the SERS reporters that can simultaneously generate SERS fingerprints of both peptides and nucleic acids. This kind of biocompatible probe appears to have excellent performance in high-salt environments and realizes rapid, simple, and multisignal detection of thrombin (TB). Data-driven soft independent modeling of class analogy (DD-SIMCA) is used to distinguish SERS profiles of actual blood samples and realize the identification and classification of cancer patients. Furthermore, the effect of low-temperature storage time on blood samples is analyzed by tracking the changes of SERS profiles; the results hint that plasma samples stored under 4 °C for more than 2 days could generate false negative results due to TB hydrolysis, which has important implications for clinical sample analysis. This kind of nucleic acid-peptide conjugate provides new ideas for SERS sensing strategy in the future.
Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Neoplasias , Ácidos Nucleicos , Humanos , Espectrometría Raman/métodos , Proteínas , Péptidos , Aptámeros de Nucleótidos/química , Neoplasias/diagnóstico , Nanopartículas del Metal/química , Oro/química , Técnicas Biosensibles/métodosRESUMEN
BACKGROUND: Perilla frutescens is widely used as both a medicine and a food worldwide. Its volatile oils are its active ingredients, and, based on the different volatile constituents, P. frutescens can be divided into several chemotypes, with perilla ketone (PK) being the most common. However, the key genes involved in PK biosynthesis have not yet been identified. RESULTS: In this study, metabolite constituents and transcriptomic data were compared in leaves of different levels. The variation in PK levels was the opposite of that of isoegoma ketone and egoma ketone in leaves at different levels. Based on transcriptome data, eight candidate genes were identified and successfully expressed in a prokaryotic system. Sequence analysis revealed them to be double bond reductases (PfDBRs), which are members of the NADPH-dependent, medium-chain dehydrogenase/reductase (MDR) superfamily. They catalyze the conversion of isoegoma ketone and egoma ketone into PK in in vitro enzymatic assays. PfDBRs also showed activity on pulegone, 3-nonen-2-one, and 4-hydroxybenzalacetone. In addition, several genes and transcription factors were predicted to be associated with monoterpenoid biosynthesis, and their expression profiles were positively correlated with variations in PK abundance, suggesting their potential functions in PK biosynthesis. CONCLUSIONS: The eight candidate genes encoding a novel double bond reductase related to perilla ketone biosynthesis were identified in P. frutescens, which carries similar sequences and molecular features as the MpPR and NtPR from Nepeta tenuifolia and Mentha piperita, respectively. These findings not only reveal the pivotal roles of PfDBR in exploring and interpreting PK biological pathway but also contribute to facilitating future studies on this DBR protein family.
Asunto(s)
Perilla frutescens , Perilla , Perilla frutescens/genética , Perilla/genética , Monoterpenos , Cetonas , OxidorreductasasRESUMEN
BACKGROUND: During Fritillaria thunbergii planting, pests and diseases usually invade the plant, resulting in reduced yield and quality. Previous studies have demonstrated that using biocontrol agents can effectively control grubs and affect the steroid alkaloids content in F. thunbergii. However, the molecular regulatory mechanisms underlying the differences in the accumulation of steroid alkaloids in response to biocontrol agents remain unclear. RESULTS: Combined transcriptomic and metabolic analyses were performed by treating the bulbs of F. thunbergii treated with biocontrol agents during planting. Otherwise, 48 alkaloids including 32 steroid alkaloids, 6 indole alkaloids, 2 scopolamine-type alkaloids, 1 isoquinoline alkaloid, 1 furoquinoline alkaloid, and 6 other alkaloids were identified. The content of steroidal alkaloids particularly peimine, peiminine, and veratramine, increased significantly in the group treated with the biocontrol agents. Transcriptome sequencing identified 929 differential genes using biocontrol agents, including 589 upregulated and 340 downregulated genes. Putative biosynthesis networks of steroid alkaloids have been established and combined with differentially expressed structural unigenes, such as acetyl-CoA C-acetyl-transferase, acelyl-CoAC-acetyltransferase3-hydroxy-3-methylglutaryl-coenzyme A synthase, 1-deoxy-D-xylulose-5-phosphate reductor-isomerase, 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase. In addition, biological processes such as amino acid accumulation and oxidative phosphorylation were predicted to be related to the synthesis of steroid alkaloids. Cytochrome P450 enzymes also play crucial roles in the steroid alkaloid synthesis. The transcription factor families MYB and bHLH were significantly upregulated after using biocontrol agents. CONCLUSIONS: Biocontrol agents increased the steroid alkaloids accumulation of steroid alkaloids by affecting key enzymes in the steroid alkaloid synthesis pathway, biological processes of oxidative phosphorylation and amino acid synthesis, cytochrome P450 enzymes, and transcription factors. This study revealed the mechanism underlying the difference in steroidal alkaloids in F. thunbergii after using biocontrol agents, laying the groundwork for future industrial production of steroid alkaloids and ecological planting of medicinal materials in the future.
Asunto(s)
Alcaloides , Fritillaria , Transcriptoma , Perfilación de la Expresión Génica , AminoácidosRESUMEN
BACKGROUND: In recent years, several studies have demonstrated that stress hyperglycemia is significantly associated with poor prognosis in patients diagnosed with acute coronary syndrome (ACS). In the present study, we aimed to investigate the potential associations between various markers of stress hyperglycemia, such as admission blood glucose (ABG), fasting blood sugar (FBS), and stress hyperglycemia ratio (SHR) with different definitions, and the occurrence of adverse cardiovascular events in patients diagnosed with ST-elevation myocardial infarction (STEMI) who have undergone percutaneous coronary intervention (PCI). METHODS: Our study enrolled a total of 1099 patients diagnosed with STEMI who underwent PCI from 2016 to 2021. The primary outcomes of this study were in-hospital death and all-cause mortality. RESULTS: Stress hyperglycemia was associated with a higher incidence of in-hospital death (ABG OR: 1.27 95% CI 1.19-1.36; FBS OR: 1.25 95% CI 1.16-1.35; SHR1 OR: 1.61 95% CI 1.21-2.14; SHR2 OR: 1.57, 95%CI 1.22-2.01; SHR3 OR: 1.59, 95%CI 1.24-2.05) and all-cause mortality (ABG HR: 1.10, 95% CI 1.07-1.14; FBS HR: 1.12, 95 CI 1.07-1.17; SHR1 HR: 1.19 95% CI 1.03-1.39; SHR2 HR: 1.28, 95%CI 1.14-1.44; SHR3 HR: 1.29, 95%CI 1.14-1.45) after adjusting for ischemic time, age, gender, BMI, hypertension, hyperlipidemia, diabetes mellitus (DM), current smoking history, chronic kidney disease (CKD), previous history of coronary artery disease (CAD), atrial fibrillation (AF), heart failure (HF), stroke, cancer, culprit vessel, multi-vessel disease. These associations exhibited a non-linear, J-shaped pattern, wherein the risk significantly increased when the ABG and FBS levels exceeded 5mmol/L. Moreover, the inflection point for SHR was estimated to be 1.2. CONCLUSIONS: Stress hyperglycemia was significantly associated with an increased risk of in-hospital death and all-cause mortality in STEMI patients treated with PCI. Stress hyperglycemia should be considered a high-risk prognostic marker in all STEMI patients, regardless of with or without diabetes.
Asunto(s)
Diabetes Mellitus , Hiperglucemia , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/diagnóstico , Infarto del Miocardio con Elevación del ST/terapia , Estudios de Cohortes , Mortalidad Hospitalaria , Intervención Coronaria Percutánea/efectos adversos , Resultado del Tratamiento , Hiperglucemia/diagnóstico , Diabetes Mellitus/diagnóstico , Glucemia , Factores de RiesgoRESUMEN
In this study, a low-cost efficient online derivatization system was developed which allows for the detection of various types of mono- and oligo-saccharides only utilizing high-performance liquid chromatography (HPLC)-ultraviolet detector (UV) system. In the proposed method, phenylhydrazine was used as the derivatization reagent and directly spiked in the mobile phase, allowing for the separation and detection of mono- and oligosaccharides in an accessible instrument system (HPLC-UV). And the online derivatization design of the proposed method has significantly reduced the potential harm of derivatization reagents to the analysts. Furthermore, critical chromatographic parameters were optimized via the Box-Behnken design strategy, culminating in the ideal response for saccharides. Finally, the methodology validation of the proposed method was conducted. The proposed method showed satisfactory linear ranges with acceptable correlation coefficients (R2 > 0.99), outstanding accuracy (Recovery: 95.3%-105.6%), high intra-day precision (relative standard deviation [RSD]: 1.4%-7.1%) and inter-day precision (RSD: 2.0%-7.4%). The robustness and ruggedness of the proposed method were proved as the recovery values in the range of 95.0%-104.6% and 95.1%-104.8% for robustness and ruggedness, respectively. These satisfactory validation results confirm the applicability and reliability of the proposed method for the analysis of saccharides in various complex real-world samples.
Asunto(s)
Carbohidratos , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Indicadores y ReactivosRESUMEN
Euryales Semen was a traditional Chinese medicine, which has been commonly used to treat spermatorrhea, enuresis, and frequent urination. Flavonoids were a critical ingredient in determining the function and quality of Euryales Semen. At present, no effective method has been established for the qualitative of Euryales Semen flavonoids. In this study, an ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry method was established for flavonoids. By comparison with standard or literature data, 32 flavonoid compounds have been identified in Euryales Semen. Based on the qualitative results, an ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectroscopy method was developed for the main components, and the linearity, the limit of detection, limit of quantification, repeatability, precision, stability, and recovery of the method were verified. The principal component analysis and the hierarchical clustering heatmaps analysis showed that the 30 batches of samples were distinctly separated into the North Gordon Euryale and South Gordon Euryale, and the measured contents of the six flavonoids in North Gordon Euryale were more abundant than in South Gordon Euryale, especially isoquercitrin, hesperetin, and quercetin. It provided a scientific basis for the quality control of Euryales Semen and a theoretical basis for the rational utilization of Euryales Semen resources.
Asunto(s)
Medicamentos Herbarios Chinos , Flavonoides , Flavonoides/análisis , Espectrometría de Masas en Tándem/métodos , Semen/química , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisisRESUMEN
BACKGROUND: We sought to investigate the midterm results of kissing self-expanding covered stents (SECSs) for the reconstruction of aortic bifurcation in complex aortoiliac occlusive disease. METHODS: Data of consecutive patients who had undergone endovascular treatment for aortoiliac occlusive disease were screened. Only patients with TransAtlantic Inter-Society Consensus (TASC) class C and D lesions treated by bilateral iliac kissing stents (KSs) were included. Midterm primary patency, risk factors, and limb salvage rates were analyzed. Follow-up results were analyzed using the Kaplan-Meier curves. Cox proportional hazards models were used to identify the predictors of primary patency. RESULTS: A total of 48 patients (95.8% men; mean age, 65.3 ± 10.2 years) were treated with kissing SECSs. Of them, 17 patients had TASC-II class C lesions and 31 had class D lesions. There were 38 total occlusive lesions, with a mean occlusive lesion length of 108.2 ± 57.3 mm. The overall mean lesion length was 140.3 ± 60.5 mm, and the mean length of implanted stents in the aortoiliac arteries was 141.9 ± 59.9 mm. The mean diameter of the deployed SECSs was 7.8 ± 0.5 mm. The mean follow-up time was 36.5 ± 15.8 months, and the follow-up rate was 95.8%. At 36 months, the overall primary patency, assisted primary patency, secondary patency, and limb salvage rates were 92.2%, 95.7%, 97.8%, and 100%, respectively. Univariate Cox regression analysis revealed that stent diameter ≤7 mm (hazard ratio [HR]: 9.53; 95% confidence interval [CI] 1.56-57.94, P = 0.014) and severe calcification (HR: 12.66; 95% CI 2.04-78.45, P = 0.006) were significantly associated with restenosis. Multivariate analysis showed severe calcification to be the only significant determinant of restenosis (HR: 12.66; 95% CI 2.04-78.45, P = 0.006). CONCLUSIONS: Kissing SECSs provide good midterm results for the treatment of aortoiliac occlusive disease. A stent diameter >7 mm is a potent protective factor against restenosis. Because severe calcification appears to be the only significant determinant of restenosis, patients with severe calcification require close follow-up.