Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612925

RESUMEN

Ethylene (ET) is an important phytohormone that regulates plant growth, development and stress responses. The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) transcription factor family, as a key regulator of the ET signal transduction pathway, plays an important role in regulating the expression of ET-responsive genes. Although studies of EIN3/EIL family members have been completed in many species, their role in doubled haploid (DH) poplar derived from another culture of diploid Populus simonii × P. nigra (donor tree, DT) remains ambiguous. In this study, a total of seven EIN3/EIL gene family members in the DH poplar genome were identified. Basic physical and chemical property analyses of these genes were performed, and these proteins were predicted to be localized to the nucleus. According to the phylogenetic relationship, EIN3/EIL genes were divided into two groups, and the genes in the same group had a similar gene structure and conserved motifs. The expression patterns of EIN3/EIL genes in the apical buds of different DH poplar plants were analyzed based on transcriptome data. At the same time, the expression patterns of PsnEIL1, PsnEIN3, PsnEIL4 and PsnEIL5 genes in different tissues of different DH plants were detected via RT-qPCR, including the apical buds, young leaves, functional leaves, xylem, cambium and roots. The findings presented above indicate notable variations in the expression levels of PsnEIL genes across various tissues of distinct DH plants. Finally, the PsnEIL1 gene was overexpressed in DT, and the transgenic plants showed a dwarf phenotype, indicating that the PsnEIL1 gene was involved in regulating the growth and development of poplar. In this study, the EIN3/EIL gene family of DH poplar was analyzed and functionally characterized, which provides a theoretical basis for the future exploration of the EIN3/EIL gene function.


Asunto(s)
Populus , Haploidia , Filogenia , Populus/genética , Etilenos
2.
J Exp Bot ; 74(14): 4077-4092, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37085949

RESUMEN

Plant growth and development rely heavily on cyclins, which comprise an important class of cell division regulators. D-type cyclins (CYCDs) are responsible for the rate-limiting step of G1 cells. In the plant kingdom, despite the importance of CYCDs in herbaceous plants, there is little knowledge of these proteins in perennial woody plants. Here, the gene of a nucleus-localized cyclin, PsnCYCD1;1, was cloned from Populus simonii × P. nigra. PsnCYCD1;1 was highly expressed in tissues with active cell division, especially the leaf buds, and could be induced by sucrose and phytohormones. Moreover, overexpression of PsnCYCD1;1 in poplar could stimulate cell division, resulting in the generation of small cells and causing severe morphological changes in the vascular bundles, resulting in 'S'-shaped tortuous stems and curled leaves. Furthermore, transcriptomic analysis revealed that endogenous genes related to cell division and vascular cambium development were significantly up-regulated in the transgenic plants. In addition, using yeast two-hybrid and bimolecular fluorescence complementation assays PsnCDKA1, PsnICK3, and PsnICK5 were identified as proteins interacting with PsnCYCD1;1. Our study demonstrates that PsnCYCD1;1 accelerates plant cell division and participates in secondary growth of vascular bundles in poplar.


Asunto(s)
Populus , Haz Vascular de Plantas/metabolismo , División Celular , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ciclinas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36835107

RESUMEN

The Ethylene Responsive Factor (ERF) transcription factor family is important for regulating plant growth and stress responses. Although the expression patterns of ERF family members have been reported in many plant species, their role in Populus alba × Populus glandulosa, an important model plant for forest research, remains unclear. In this study, we identified 209 PagERF transcription factors by analyzing the P. alba × P. glandulosa genome. We analyzed their amino acid sequences, molecular weight, theoretical pI (Isoelectric point), instability index, aliphatic index, grand average of hydropathicity, and subcellular localization. Most PagERFs were predicted to localize in the nucleus, with only a few PagERFs localized in the cytoplasm and nucleus. Phylogenetic analysis divided the PagERF proteins into ten groups, Class I to X, with those belonging to the same group containing similar motifs. Cis-acting elements associated with plant hormones, abiotic stress responses, and MYB binding sites were analyzed in the promoters of PagERF genes. We used transcriptome data to analyze the expression patterns of PagERF genes in different tissues of P. alba × P. glandulosa, including axillary buds, young leaves, functional leaves, cambium, xylem, and roots, and the results indicated that PagERF genes are expressed in all tissues of P. alba × P. glandulosa, especially in roots. Quantitative verification results were consistent with transcriptome data. When P. alba × P. glandulosa seedlings were treated with 6% polyethylene glycol 6000 (PEG6000), the results of RT-qRCR showed that nine PagERF genes responded to drought stress in various tissues. This study provides a new perspective on the roles of PagERF family members in regulating plant growth and development, and responses to stress in P. alba × P. glandulosa. Our study provides a theoretical basis for ERF family research in the future.


Asunto(s)
Populus , Factores de Transcripción , Factores de Transcripción/metabolismo , Populus/genética , Sequías , Filogenia , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo , Proteínas de Plantas/genética , Estrés Fisiológico
4.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768411

RESUMEN

The C-Repeat Binding Factor (CBF) gene family has been identified and characterized in multiple plant species, and it plays a crucial role in responding to low temperatures. Presently, only a few studies on tree species demonstrate the mechanisms and potential functions of CBFs associated with cold resistance, while our study is a novel report on the multi-aspect differences of CBFs among three tree species, compared to previous studies. In this study, genome-wide identification and analysis of the CBF gene family in Acer truncatum, Acer pseudosieboldianum, and Acer yangbiense were performed. The results revealed that 16 CBF genes (five ApseCBFs, four AcyanCBFs, and seven AtruCBFs) were unevenly distributed across the chromosomes, and most CBF genes were mapped on chromosome 2 (Chr2) and chromosome 11 (Chr11). The analysis of phylogenetic relationships, gene structure, and conserved motif showed that 16 CBF genes could be clustered into three subgroups; they all contained Motif 1 and Motif 5, and most of them only spanned one exon. The cis-acting elements analysis showed that some CBF genes might be involved in hormone and abiotic stress responsiveness. In addition, CBF genes exhibited tissue expression specificity. High expressions of ApseCBF1, ApseCBF3, AtruCBF1, AtruCBF4, AtruCBF6, AtruCBF7, and ApseCBF3, ApseCBF4, ApseCBF5 were detected on exposure to low temperature for 3 h and 24 h. Low expressions of AtruCBF2, AtruCBF6, AtruCBF7 were detected under cold stress for 24 h, and AtruCBF3 and AtruCBF5 were always down-regulated under cold conditions. Taken together, comprehensive analysis will enhance our understanding of the potential functions of the CBF genes on cold resistance, thereby providing a reference for the introduction of Acer species in our country.


Asunto(s)
Acer , Respuesta al Choque por Frío , Respuesta al Choque por Frío/genética , Acer/genética , Filogenia , Frío , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445753

RESUMEN

CBF (C-repeat binding factor) transcription factor subfamily belongs to AP2/ERF (Apetala 2/ethylene-responsive factor) transcription factor family, known for playing a vital role in plant abiotic stress response. Although some CBF transcription factors have been identified in several species, such as Arabidopsis, tobacco, tomato and poplar, research of CBF focus mainly on model plant Arabidopsis and have not been reported in Betula platyphylla yet. In this study, a total of 20 BpCBF subfamily members were identified. The conserved domains, physicochemical properties, exon-intron gene structure and the structure of conserved protein motifs of BpCBFs were analyzed via bioinformatic tools. The collinearity analysis of CBF genes was performed between Betula platyphylla and Arabidopsis thaliana, Betula platyphylla, and Populus trichocarpa. The cis-acting elements in the promoter region of BpCBFs were identified, which were mainly environmental stress-related and hormone-related element components. In this case, the expression patterns of the 20 BpCBFs upon ABA or salt treatment were investigated. Most of these transcription factors were responsive to ABA or salt stress in different plant tissues. The up-regulation trend upon cold treatment of the six cold-responsive genes validated by qRT-PCR was consistent with the result of RNA-seq. BpCBF7 showed transcription activating activity. This study sheds light on the responses of BpCBFs to abiotic stress and provides a reference for further study of CBF transcription factors in woody plants.


Asunto(s)
Arabidopsis , Factores de Transcripción , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
6.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203267

RESUMEN

As a plant-specific transcription factor, the SPL gene family plays a critical role in plant growth and development. Although the SPL gene family has been identified in diverse plant species, there have been no genome-wide identification or systematic study reports on the SPL gene family in Catalpa bungei. In this study, we identified 19 putative SPL gene family members in the C. bungei genome. According to the phylogenetic relationship, they can be divided into eight groups, and the genes in the same group have a similar gene structure and conserved motifs. Synteny analysis showed that fragment duplication played an important role in the expansion of the CbuSPL gene family. At the same time, CbuSPL genes have cis-acting elements and functions related to light response, hormone response, growth and development, and stress response. Tissue-specific expression and developmental period-specific expression analysis showed that CbuSPL may be involved in flowering initiation and development, flowering transition, and leaf development. In addition, the ectopic expression of CbuSPL4 in Arabidopsis confirmed that it can promote early flowering and induce the expression of related flowering genes. These systematic research results will lay a foundation for further study on the functional analysis of SPL genes in C. bungei.


Asunto(s)
Arabidopsis , Lepidópteros , Animales , Factores de Transcripción/genética , Filogenia , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Arabidopsis/genética
7.
Genome Res ; 29(8): 1343-1351, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31186303

RESUMEN

Eukaryotic gene expression is often tightly regulated by interactions between transcription factors (TFs) and their DNA cis targets. Yeast one-hybrid (Y1H) is one of the most extensively used methods to discover these interactions. We developed a high-throughput meiosis-directed yeast one-hybrid system using the Magic Markers of the synthetic genetic array analysis. The system has a transcription factor-DNA interaction discovery rate twice as high as the conventional diploid-mating approach and a processing time nearly one-tenth of the haploid-transformation method. The system also offers the highest accuracy in identifying TF-DNA interactions that can be authenticated in vivo by chromatin immunoprecipitation. With these unique features, this meiosis-directed Y1H system is particularly suited for constructing novel and comprehensive genome-scale gene regulatory networks for various organisms.


Asunto(s)
ADN/genética , Análisis por Micromatrices/métodos , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Animales , ADN/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Marcadores Genéticos , Humanos , Meiosis , Análisis por Micromatrices/instrumentación , Plásmidos/química , Plásmidos/metabolismo , Ploidias , Populus/citología , Unión Proteica , Protoplastos/citología , Protoplastos/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo
8.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409087

RESUMEN

Populus euphratica is mainly distributed in desert environments with dry and hot climate in summer and cold in winter. Compared with other poplars, P. euphratica is more resistant to salt stress. It is critical to investigate the transcriptome and molecular basis of salt tolerance in order to uncover stress-related genes. In this study, salt-tolerant treatment of P. euphratica resulted in an increase in osmo-regulatory substances and recovery of antioxidant enzymes. To improve the mining efficiency of candidate genes, the analysis combining both the transcriptome WGCNA and the former GWAS results was selected, and a range of key regulatory factors with salt resistance were found. The PeERF1 gene was highly connected in the turquoise modules with significant differences in salt stress traits, and the expression levels were significantly different in each treatment. For further functional verification of PeERF1, we obtained stable overexpression and dominant suppression transgenic lines by transforming into Populus alba × Populusglandulosa. The growth and physiological characteristics of the PeERF1 overexpressed plants were better than that of the wild type under salt stress. Transcriptome analysis of leaves of transgenic lines and WT revealed that highly enriched GO terms in DEGs were associated with stress responses, including abiotic stimuli responses, chemical responses, and oxidative stress responses. The result is helpful for in-depth analysis of the salt tolerance mechanism of poplar. This work provides important genes for poplar breeding with salt tolerance.


Asunto(s)
Populus , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Populus/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
9.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076949

RESUMEN

Light is one of the most important environmental cues that affects plant development and regulates its behavior. Light stress directly inhibits physiological responses and plant tissue development and even induces mortality in plants. Korean pine (Pinus koraiensis) is an evergreen conifer species widely planted in northeast China that has important economic and ecological value. However, the effects of light stress on the growth and development of Korean pine are still unclear. In this study, the effects of different shading conditions on physiological indices, molecular mechanisms and metabolites of Korean pine were explored. The results showed that auxin, gibberellin and abscisic acid were significantly increased under all shading conditions compared with the control. The contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid also increased as the shading degree increased. Moreover, a total of 8556, 3751 and 6990 differentially expressed genes (DEGs) were found between the control and HS (heavy shade), control and LS (light shade), LS vs. HS, respectively. Notably, most DEGs were assigned to pathways of phytohormone signaling, photosynthesis, carotenoid and flavonoid biosynthesis under light stress. The transcription factors MYB-related, AP2-ERF and bHLH specifically increased expression during light stress. A total of 911 metabolites were identified, and 243 differentially accumulated metabolites (DAMs) were detected, among which flavonoid biosynthesis (naringenin chalcone, dihydrokaempferol and kaempferol) metabolites were significantly different under light stress. These results will provide a theoretical basis for the response of P. koraiensis to different light stresses.


Asunto(s)
Pinus , Carotenoides/metabolismo , Clorofila A/metabolismo , Flavonoides/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Pinus/metabolismo , Transcriptoma
10.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768855

RESUMEN

The molecular karyotype could represent the basic genetic make-up in a cell nucleus of an organism or species. A doubled haploid (DH) is a genotype formed from the chromosome doubling of haploid cells. In the present study, molecular karyotype analysis of the poplar hybrid Populus simonii × P. nigra (P. xiaohei) and the derived doubled haploids was carried out with labeled telomeres, rDNA, and two newly repetitive sequences as probes by fluorescence in situ hybridization (FISH). The tandem repeats, pPC349_XHY and pPD284_XHY, with high-sequence homology were used, and the results showed that they presented the colocalized distribution signal in chromosomes. For P. xiaohei, pPD284_XHY produced hybridizations in chromosomes 1, 5, 8, and 9 in the hybrid. The combination of pPD284_XHY, 45S rDNA, and 5S rDNA distinctly distinguished six pairs of chromosomes, and the three pairs of chromosomes showed a significant difference in the hybridization between homologous chromosomes. The repeat probes used produced similar FISH hybridizations in the DH; nevertheless, pPD284_XHY generated an additional hybridization site in the telomere region of chromosome 14. Moreover, two pairs of chromosomes showed differential hybridization distributions between homologous chromosomes. Comparisons of the distinguished chromosomes between hybrid and DH poplar showed that three pairs of chromosomes in the DH presented hybridization patterns that varied from those of the hybrid. The No. 8 chromosome in DH and one of the homologous chromosomes in P. xiaohei shared highly similar FISH patterns, which suggested the possibility of intact or mostly partial transfer of the chromosome between the hybrid and DH. Our study will contribute to understanding the genetic mechanism of chromosomal variation in P. xiaohei and derived DH plants.


Asunto(s)
Quimera/genética , Genoma de Planta/genética , Populus/genética , Secuencias Repetidas en Tándem/genética , Cromosomas de las Plantas/genética , Genotipo , Cariotipo , Cariotipificación , Populus/clasificación
11.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072501

RESUMEN

d-type cyclins (CYCDs) are a special class of cyclins and play extremely important roles in plant growth and development. In the plant kingdom, most of the existing studies on CYCDs have been done on herbaceous plants, with few on perennial woody plants. Here, we identified a Populus d-type cyclin gene, PsnCYCD1;1, which is mainly transcribed in leaf buds and stems. The promoter of PsnCYCD1;1 activated GUS gene expression and transgenic Arabidopsis lines were strongly GUS stained in whole seedlings and mature anthers. Moreover, subcellular localization analysis showed the fluorescence signal of PsnCYCD1;1-GFP fusion protein is present in the nucleus. Furthermore, overexpression of the PsnCYCD1;1 gene in Arabidopsis can promote cell division and lead to small cell generation and cytokinin response, resulting in curved leaves and twisted inflorescence stems. Moreover, the transcriptional levels of endogenous genes, such as ASs, KNATs, EXP10, and PHB, were upregulated by PsnCYCD1;1. Together, our results indicated that PsnCYCD1;1 participates in cell division by cytokinin response, providing new information on controlling plant architecture in woody plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , División Celular/genética , Ciclina D3/genética , Expresión Génica , Hojas de la Planta/genética , Populus/genética , Proteínas de Arabidopsis/metabolismo , Clonación Molecular , Ciclina D3/metabolismo , Regulación de la Expresión Génica de las Plantas , Morfogénesis/genética , Especificidad de Órganos , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas
12.
Physiol Mol Biol Plants ; 27(6): 1277-1293, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34220043

RESUMEN

Poplar 84 K (Populus alba x P. tremula var. glandulosa) is a good resource for genetic engineering due to its rapid growth and wide adaptability, and it is also an excellent ornamental tree species. In this study, we used 84 K plantlets grown in the nitrogen-limited medium as experimental materials to explore the molecular mechanism in 84 K leaves under nitrogen deficiency. A total of 5,868 differentially expressed genes (DEGs) were identified using the transcriptional information from RNA-seq data. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment results revealed that the DEGs were mainly involved in energy metabolism and anthocyanin biosynthesis. We then identified differentially expressed transcription factors (TFs) and constructed TF centered gene co-expression networks for chlorophyll and anthocyanin biosynthesis pathway genes. Twenty potential regulators were finally identified. We speculated the transcription factors that control the pigmentation in leaves with the MYB-bHLH-WD40 (MBW) pigment regulatory model. Such identification will clarify the genetic basis of the secondary metabolism in 84 K, and being a source of candidate genes for future plant genetic engineering. Our work broadens the researchers' understanding of the regulation of anthocyanin synthesis in trees and provides new perspectives for ornamental 84 K poplar breeding. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01012-3.

13.
BMC Genomics ; 21(1): 10, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900194

RESUMEN

BACKGROUND: Pinus koraiensis is an evergreen tree species with strong cold resistance. However, the transcriptomic patterns in response to cold stress are poorly understood for P. koraiensis. In this study, global transcriptome profiles were generated for P. koraiensis under cold stress (- 20 °C) over time by high-throughput sequencing. RESULTS: More than 763 million clean reads were produced, which assembled into a nonredundant data set of 123,445 unigenes. Among them, 38,905 unigenes had homology with known genes, 18,239 were assigned to 54 gene ontology (GO) categories and 18,909 were assigned to 25 clusters of orthologous groups (COG) categories. Comparison of transcriptomes of P. koraiensis seedlings grown at room temperature (20 °C) and low temperature (- 20 °C) revealed 9842 differential expressed genes (DEGs) in the 6 h sample, 9250 in the 24 h sample, and 9697 in the 48 h sample. The number of DEGs in the pairwise comparisons of 6 h, 24 h and 48 h was relatively small. The accuracy of the RNA-seq was validated by analyzing the expression patterns of 12 DEGs by quantitative real-time PCR (qRT-PCR). In this study, 34 DEGs (22 upregulated and 12 downregulated) were involved in the perception and transmission of cold signals, 96 DEGs (41 upregulated and 55 downregulated) encoding 8 transcription factors that regulated cold-related genes expression, and 27 DEGs (17 upregulated and 10 downregulated) were involved in antioxidant mechanisms in response to cold stress. Among them, the expression levels of c63631_g1 (annexin D1), c65620_g1 (alpha-amylase isozyme 3C), c61970_g1 (calcium-binding protein KIC), c51736_g1 (ABA), c58408_g1 (DREB3), c66599_g1 (DREB3), c67548_g2 (SOD), c55044_g1 (CAT), c71938_g2 (CAT) and c11358_g1 (GPX) first increased significantly and then decreased significantly with the extension of stress time. CONCLUSIONS: A large number of DEGs were identified in P. koraiensis under cold stress, especially the DEGs involved in the perception and transmission of cold signals, the DEGs encoding TFs related to cold regulation and the DEGs removing ROS in antioxidation mechanisms. The transcriptome and digital expression profiling of P. koraiensis could facilitate the understanding of the molecular control mechanism related to cold responses and provide the basis for the molecular breeding of conifers.


Asunto(s)
Respuesta al Choque por Frío/genética , Pinus/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Pinus/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Factores de Transcripción/genética
14.
BMC Genomics ; 21(1): 508, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698759

RESUMEN

BACKGROUND: Floral transition plays an important role in development, and proper time is necessary to improve the value of valuable ornamental trees. The molecular mechanisms of floral transition remain unknown in perennial woody plants. "Bairihua" is a type of C. bungei that can undergo floral transition in the first planting year. RESULTS: Here, we combined short-read next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing to provide a more complete view of transcriptome regulation during floral transition in C. bungei. The circadian rhythm-plant pathway may be the critical pathway during floral transition in early flowering (EF) C. bungei, according to horizontal and vertical analysis in EF and normal flowering (NF) C. bungei. SBP and MIKC-MADS-box were seemingly involved in EF during floral transition. A total of 61 hub genes were associated with floral transition in the MEturquoise model with Weighted Gene Co-expression Network Analysis (WGCNA). The results reveal that ten hub genes had a close connection with the GASA homologue gene (Cbu.gene.18280), and the ten co-expressed genes belong to five flowering-related pathways. Furthermore, our study provides new insights into the complexity and regulation of alternative splicing (AS). The ratio or number of isoforms of some floral transition-related genes is different in different periods or in different sub-genomes. CONCLUSIONS: Our results will be a useful reference for the study of floral transition in other perennial woody plants. Further molecular investigations are needed to verify our sequencing data.


Asunto(s)
Bignoniaceae , Regulación de la Expresión Génica de las Plantas , Bignoniaceae/genética , Flores/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma
15.
BMC Plant Biol ; 20(1): 105, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143577

RESUMEN

BACKGROUND: "Bairihua", a variety of the Catalpa bungei, has a large amount of flowers and a long flowering period which make it an excellent material for flowering researches in trees. SPL is one of the hub genes that regulate both flowering transition and development. RESULTS: SPL homologues CbuSPL9 was cloned using degenerate primers with RACE. Expression studies during flowering transition in "Bairihua" and ectopic expression in Arabidopsis showed that CbuSPL9 was functional similarly with its Arabidopsis homologues. In the next step, we used Y2H to identify the proteins that could interact with CbuSPL9. HMGA, an architectural transcriptional factor, was identified and cloned for further research. BiFC and BLI showed that CbuSPL9 could form a heterodimer with CbuHMGA in the nucleus. The expression analysis showed that CbuHMGA had a similar expression trend to that of CbuSPL9 during flowering in "Bairihua". Intriguingly, ectopic expression of CbuHMGA in Arabidopsis would lead to aberrant flowers, but did not effect flowering time. CONCLUSIONS: Our results implied a novel pathway that CbuSPL9 regulated flowering development, but not flowering transition, with the participation of CbuHMGA. Further investments need to be done to verify the details of this pathway.


Asunto(s)
Bignoniaceae/genética , Expresión Génica Ectópica , Flores/crecimiento & desarrollo , Expresión Génica , Proteínas de Plantas/genética , Transactivadores/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Bignoniaceae/crecimiento & desarrollo , Bignoniaceae/metabolismo , Clonación Molecular , Flores/genética , Filogenia , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Transactivadores/metabolismo
16.
Int J Mol Sci ; 21(5)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121503

RESUMEN

: Catalpa bungei is an economically important tree with high-quality wood and highly valuable to the study of wood formation. In this work, the xylem microstructure of C. bungei tension wood (TW) was observed, and we performed transcriptomics, proteomics and Raman spectroscopy of TW, opposite wood (OW) and normal wood (NW). The results showed that there was no obvious gelatinous layer (G-layer) in the TW of C. bungei and that the secondary wall deposition in the TW was reduced compared with that in the OW and NW. We found that most of the differentially expressed mRNAs and proteins were involved in carbohydrate polysaccharide synthesis. Raman spectroscopy results indicated that the cellulose and pectin content and pectin methylation in the TW were lower than those in the OW and NW, and many genes and proteins involved in the metabolic pathways of cellulose and pectin, such as galacturonosyltransferase (GAUT), polygalacturonase (PG), endoglucanase (CLE) and ß-glucosidase (BGLU) genes, were significantly upregulated in TW. In addition, we found that the MYB2 transcription factor may regulate the pectin degradation genes PG1 and PG3, and ARF, ERF, SBP and MYB1 may be the key transcription factors regulating the synthesis and decomposition of cellulose. In contrast to previous studies on TW with a G-layer, our results revealed a change in metabolism in TW without a G-layer, and we inferred that the change in the pectin type, esterification and cellulose characteristics in the TW of C. bungei may contribute to high tensile stress. These results will enrich the understanding of the mechanism of TW formation.


Asunto(s)
Bignoniaceae/genética , Bignoniaceae/metabolismo , Perfilación de la Expresión Génica , Pectinas/metabolismo , Proteómica , Transcriptoma/genética , Madera/metabolismo , Pared Celular/metabolismo , Celulosa/biosíntesis , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polisacáridos/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espectrometría Raman , Madera/anatomía & histología , Madera/genética
17.
BMC Plant Biol ; 19(1): 596, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888555

RESUMEN

BACKGROUND: Catalpa bungei is an important tree species used for timber in China and widely cultivated for economic and ornamental purposes. A high-density linkage map of C. bungei would be an efficient tool not only for identifying key quantitative trait loci (QTLs) that affect important traits, such as plant growth and leaf traits, but also for other genetic studies. RESULTS: Restriction site-associated DNA sequencing (RAD-seq) was used to identify molecular markers and construct a genetic map. Approximately 280.77 Gb of clean data were obtained after sequencing, and in total, 25,614,295 single nucleotide polymorphisms (SNPs) and 2,871,647 insertions-deletions (InDels) were initially identified in the genomes of 200 individuals of a C. bungei (7080) × Catalpa duclouxii (16-PJ-3) F1 population and their parents. Finally, 9072 SNP and 521 InDel markers that satisfied the requirements for constructing a genetic map were obtained. The integrated genetic map contained 9593 pleomorphic markers in 20 linkage groups and spanned 3151.63 cM, with an average distance between adjacent markers of 0.32 cM. Twenty QTLs for seven leaf traits and 13 QTLs for plant height at five successive time points were identified using our genetic map by inclusive composite interval mapping (ICIM). Q16-60 was identified as a QTL for five leaf traits, and three significant QTLs (Q9-1, Q18-66 and Q18-73) associated with plant growth were detected at least twice. Genome annotation suggested that a cyclin gene participates in leaf trait development, while the growth of C. bungei may be influenced by CDC48C and genes associated with phytohormone synthesis. CONCLUSIONS: This is the first genetic map constructed in C. bungei and will be a useful tool for further genetic study, molecular marker-assisted breeding and genome assembly.


Asunto(s)
Bignoniaceae/crecimiento & desarrollo , Bignoniaceae/genética , Genes de Plantas , Hojas de la Planta/fisiología , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Hibridación Genética , Fenotipo , Hojas de la Planta/genética
18.
Int J Mol Sci ; 20(8)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999580

RESUMEN

Variegated plants are valuable materials for investigating leaf color regulated mechanisms. To unveil the role of posttranslational modification in the variegated phenotype, we conducted global quantitative phosphoproteomic analysis on different leaf color sectors of Maiyuanjinqiu and the corresponding of Catalpa fargesii using Ti4+-IMAC phosphopeptide enrichment. A total of 3778 phosphorylated sites assigned to 1646 phosphoproteins were identified, and 3221 in 1434 proteins were quantified. Differential phosphoproteins (above 1.5 or below 1/1.5) in various leaf color sectors were selected for functional enrichment analyses. Gene ontology (GO) enrichment revealed that processes of photosynthesis, regulation of the generation of precursor metabolites, response to stress, homeostasis, amino acid metabolism, transport-related processes, and most of the energy metabolisms might contribute to leaf color. KEGG pathway enrichment analysis was performed based on differential phosphoproteins (DPs) in different organelles. The result showed that most enriched pathways were located in the chloroplasts and cytosol. The phosphorylation levels of glycometabolism enzymes might greatly affect leaf variegation. Measurements of fluorescence parameters and enzyme activities confirmed that protein phosphorylation could affect plant physiology by regulating enzyme activity. These results provide new clues for further study the formation mechanisms of naturally variegated phenotype.


Asunto(s)
Bignoniaceae/metabolismo , Fosfoproteínas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Secuencia de Aminoácidos , Bignoniaceae/química , Bignoniaceae/genética , Ontología de Genes , Fenotipo , Fosfoproteínas/análisis , Fosfoproteínas/genética , Hojas de la Planta/química , Hojas de la Planta/genética , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Procesamiento Proteico-Postraduccional
19.
BMC Genomics ; 19(1): 950, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30572840

RESUMEN

BACKGROUND: Betula platyphylla is a common tree species in northern China that has high economic and medicinal value. Our laboratory has been devoted to genome research on B. platyphylla for approximately 10 years. As primary organelle genomes, the complete genome sequences of chloroplasts are important to study the divergence of species, RNA editing and phylogeny. In this study, we sequenced and analyzed the complete chloroplast (cp) genome sequence of B. platyphylla. RESULTS: The complete cp genome of B. platyphylla was 160,518 bp in length, which included a pair of inverted repeats (IRs) of 26,056 bp that separated a large single copy (LSC) region of 89,397 bp and a small single copy (SSC) region of 19,009 bp. The annotation contained a total of 129 genes, including 84 protein-coding genes, 37 tRNA genes and 8 rRNA genes. There were 3 genes using alternative initiation codons. Comparative genomics showed that the sequence of the Fagales species cp genome was relatively conserved, but there were still some high variation regions that could be used as molecular markers. The IR expansion event of B. platyphylla resulted in larger cp genomes and rps19 pseudogene formation. The simple sequence repeat (SSR) analysis showed that there were 105 SSRs in the cp genome of B. platyphylla. RNA editing sites recognition indicated that at least 80 RNA editing events occurred in the cp genome. Most of the substitutions were C to U, while a small proportion of them were not. In particular, three editing loci on the rRNA were converted to more than two other bases that had never been reported. For synonymous conversion, most of them increased the relative synonymous codon usage (RSCU) value of the codons. The phylogenetic analysis suggested that B. platyphylla had a closer evolutionary relationship with B. pendula than B. nana. CONCLUSIONS: In this study, we not only obtained and annotated the complete cp genome sequence of B. platyphylla, but we also identified new RNA editing sites and predicted the phylogenetic relationships among Fagales species. These findings will facilitate genomic, genetic engineering and phylogenetic studies of this important species.


Asunto(s)
Betula/genética , Cloroplastos/genética , Genoma del Cloroplasto , Filogenia , Edición de ARN , Betula/clasificación , Proteínas de Cloroplastos/genética , Codón , Evolución Molecular , Genómica/métodos , Anotación de Secuencia Molecular
20.
BMC Genet ; 19(1): 86, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30236060

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) have crucial roles in various biological regulatory processes. However, the study of lncRNAs is limited in woody plants. Catalpa bungei is a valuable ornamental tree with a long cultivation history in China, and a deeper understanding of the floral transition mechanism in C. bungei would be interesting from both economic and scientific perspectives. RESULTS: In this study, we categorized C. bungei buds from early flowering (EF) and normal flowering (NF) varieties into three consecutive developmental stages. These buds were used to systematically study lncRNAs during floral transition using high-throughput sequencing to identify molecular regulatory networks. Quantitative real-time PCR was performed to study RNA expression changes in different stages. In total, 12,532 lncRNAs and 26,936 messenger RNAs (mRNAs) were detected. Moreover, 680 differentially expressed genes and 817 differentially expressed lncRNAs were detected during the initiation of floral transition. The results highlight the mRNAs and lncRNAs that may be involved in floral transition, as well as the many lncRNAs serving as microRNA precursors. We predicted the functions of lncRNAs by analysing the relationships between lncRNAs and mRNAs. Seven lncRNA-mRNA interaction pairs may participate in floral transition. CONCLUSIONS: This study is the first to identify lncRNAs and their potential functions in floral transition, providing a starting point for detailed determination of the functions of lncRNAs in C. bungei.


Asunto(s)
Bignoniaceae/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica , ARN Largo no Codificante/genética , Bignoniaceae/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA