Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897723

RESUMEN

Light plays an essential role in a variety of physiological processes, including vision, mood, and glucose homeostasis. However, the intricate relationship between light and an animal's feeding behavior has remained elusive. Here, we found that light exposure suppresses food intake, whereas darkness amplifies it in male mice. Interestingly, this phenomenon extends its reach to diurnal male Nile grass rats and healthy humans. We further show that lateral habenula (LHb) neurons in mice respond to light exposure, which in turn activates 5-HT neurons in the dorsal Raphe nucleus (DRN). Activation of the LHb → 5-HTDRN circuit in mice blunts darkness-induced hyperphagia, while inhibition of the circuit prevents light-induced anorexia. Together, we discovered a light responsive neural circuit that relays the environmental light signals to regulate feeding behavior in mice.Significance statement Feeding behavior is influenced by a myriad of sensory inputs, but the impact of light exposure on feeding regulation has remained enigmatic. Here, we showed that light exposure diminishes food intake across both nocturnal and diurnal species. Delving deeper, our findings revealed that the LHb → 5-HTDRN neural circuit plays a pivotal role in mediating light-induced anorexia in mice. These discoveries not only enhance our comprehension of the intricate neuronal mechanisms governing feeding in response to light but also offer insights for developing innovative strategies to address obesity and eating disorders.

2.
Lipids Health Dis ; 23(1): 207, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951816

RESUMEN

BACKGROUND: Ketogenic diets are increasingly popular for addressing obesity, but their impacts on the gut microbiota and metabolome remain unclear. This paper aimed to investigate how a ketogenic diet affects intestinal microorganisms and metabolites in obesity. METHODS: Male mice were provided with one of the following dietary regimens: normal chow, high-fat diet, ketogenic diet, or high-fat diet converted to ketogenic diet. Body weight and fat mass were measured weekly using high-precision electronic balances and minispec body composition analyzers. Metagenomics and non-targeted metabolomics data were used to analyze differences in intestinal contents. RESULTS: Obese mice on the ketogenic diet exhibited notable improvements in weight and body fat. However, these were accompanied by a significant decrease in intestinal microbial diversity, as well as an increase in Firmicutes abundance and a 247% increase in the Firmicutes/Bacteroidetes ratio. The ketogenic diet also altered multiple metabolic pathways in the gut, including glucose, lipid, energy, carbohydrate, amino acid, ketone body, butanoate, and methane pathways, as well as bacterial secretion and colonization pathways. These changes were associated with increased intestinal inflammation and dysbiosis in obese mice. Furthermore, the ketogenic diet enhanced the secretion of bile and the synthesis of aminoglycoside antibiotics in obese mice, which may impair the gut microbiota and be associated with intestinal inflammation and immunity. CONCLUSIONS: The study suggest that the ketogenic diet had an unfavorable risk-benefit trade-off and may compromise metabolic homeostasis in obese mice.


Asunto(s)
Dieta Alta en Grasa , Dieta Cetogénica , Microbioma Gastrointestinal , Metagenómica , Obesidad , Dieta Cetogénica/efectos adversos , Animales , Masculino , Ratones , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Metagenómica/métodos , Metabolómica/métodos , Disbiosis/microbiología , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Metaboloma , Peso Corporal
3.
Nucleic Acids Res ; 50(8): e44, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34967412

RESUMEN

Many pathological processes are driven by RNA-protein interactions, making such interactions promising targets for molecular interventions. HIV-1 assembly is one such process, in which the viral genomic RNA interacts with the viral Gag protein and serves as a scaffold to drive Gag multimerization that ultimately leads to formation of a virus particle. Here, we develop self-assembled RNA nanostructures that can inhibit HIV-1 virus assembly, achieved through hybridization of multiple artificial small RNAs with a stem-loop structure (STL) that we identify as a prominent ligand of Gag that can inhibit virus particle production via STL-Gag interactions. The resulting STL-decorated nanostructures (double and triple stem-loop structures denoted as Dumbbell and Tribell, respectively) can elicit more pronounced viral blockade than their building blocks, with the inhibition arising as a result of nanostructures interfering with Gag multimerization. These findings could open up new avenues for RNA-based therapy.


Asunto(s)
VIH-1 , Nanoestructuras , VIH-1/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Virión/metabolismo , Ensamble de Virus/fisiología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
4.
Pharm Dev Technol ; : 1-29, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973737

RESUMEN

To address the disadvantages of poor water solubility, cardiotoxicity, and hypersensitivity reactions of paclitaxel (PTX). In this study, paclitaxel silk fibroin nanoparticles (PTX-SF-NPs) were prepared by self-assembly method, and then, the nanoparticles were encapsulated by using the outer membrane vesicles of Escherichia coli (E. coil), so that biofilm-encapsulated paclitaxel silk fibroin nanoparticles (OMV-PTX-SF-NPs) were constructed. Subsequently, the prepared nanoparticles were characterized in terms of particle size and zeta potential, and in vitro cytotoxicity studies were carried out, which showed that both PTX-SF-NPs and OMV-PTX-SF-NPs possessed good antitumor activity against tumor cells. In the in vivo biodistribution study and antitumor study, the results showed that OMV-PTX-SF-NPs could effectively increase the bioavailability of paclitaxel, prolong the action time of paclitaxel in vivo, reduce the absorption of paclitaxel in the stomach, increase the concentration of paclitaxel in tumor tissues, and significantly inhibit the growth of tumors. Overall, OMV-PTX-SF-NPs is a stable extended-release oral formulation of paclitaxel, which can effectively improve the bioavailability of paclitaxel, enhance the anti-tumor activity and reduce the adverse reactions.

5.
Sensors (Basel) ; 23(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37688107

RESUMEN

In low-voltage distribution systems, the load types are complex, so traditional detection methods cannot effectively identify series arc faults. To address this problem, this paper proposes an arc fault detection method based on multimodal feature fusion. Firstly, the different mode features of the current signal are extracted by mathematical statistics, Fourier transform, wavelet packet transform, and continuous wavelet transform. The different modal features include one-dimensional features, such as time-domain features, frequency-domain features, and wavelet packet energy features, and two-dimensional features of time-spectrum images. Secondly, the extracted features are preprocessed and prioritized for importance based on different machine learning algorithms to improve the feature data quality. The features of higher importance are input into an arc fault detection model. Finally, an arc fault detection model is constructed based on a one-dimensional convolutional network and a deep residual shrinkage network to achieve high accuracy. The proposed detection method has higher detection accuracy and better performance compared with the arc fault detection method based on single-mode features.

6.
Org Biomol Chem ; 20(40): 7949-7955, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36178274

RESUMEN

Substituted benzo[cd]indoles are one of the most attractive frameworks because of their wide range of biological and optical activities. Herein, a copper-catalyzed one-step synthesis of biologically important polysubstituted benzo[cd]indoles starting from 8-alkynyl-1-naphthylamine derivatives is reported. In this protocol, many substituents tolerated the reaction conditions and produced (Z)-benzo[cd]indoles in good yields. Preliminary mechanistic studies indicated that the reaction proceeds via a stereoselective intramolecular trans-addition and SN-Ar reaction with high selectivity and high yields. The synthesized polysubstituted (Z)-benzo[cd]indoles possess sulfonamide building blocks, which make them candidates for bioactive molecules.


Asunto(s)
Cobre , Indoles , Catálisis , Sulfonamidas , 1-Naftilamina
7.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955755

RESUMEN

Human intestinal organoids (HIOs) generated from human pluripotent stem cells hold great promise for modeling human development and as a possible source of tissue for transplantation. HIOs generate all of the main epithelial and mesenchymal cell types found in the developing human intestine and mature into intestinal tissue with crypts and villi following transplantation into immunocompromised mice. However, incomplete in vitro patterning and the presence of contaminating neurons could hinder their use for regenerative medicine in humans. Based on studies in model organisms, we hypothesized that the treatment of HIOs with all trans retinoic acid (ATRA) would improve their in vitro growth and patterning. We found that ATRA not only improved the patterning of HIOs, ATRA also increased organoid forming efficiency, improved epithelial growth, enriched intestinal subepithelial myofibroblasts (ISEMFs) and reduced neuronal contamination in HIOs. Taken together, our studies demonstrate how the manipulation of a single developmental signaling pathway can be used to improve the survival, patterning and cellular composition of HIOs.


Asunto(s)
Organoides , Células Madre Pluripotentes , Animales , Diferenciación Celular , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Tretinoina/metabolismo , Tretinoina/farmacología
8.
Angew Chem Int Ed Engl ; 61(3): e202112507, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34800076

RESUMEN

The use of simple building blocks to produce hierarchical and porous structured materials is highly desired. Rings are simple colloidal particles but unique for their internal cavities. Here we report the self-assembly (SA) of colloidal rings with tunable asymmetry mediated by a depletion force and demonstrate that a variety of porous colloidal superstructures from microtubes, flexible chains, (plastic) crystals to highly open liquid crystals (LCs) can be formed along the predesigned SA paths. In particular, the SA is staged in binary or ternary systems. Large rings first form complex ring-in-ring and ring-in-ring-in-ring assemblies by capturing smaller rings, which, as new building blocks, can further form multi-walled microtubes and open columnar LCs. Moreover, a plastic columnar LC with alternating intracolumnar stacking is found from asymmetrical rings. The SA with colloidal rings opens a new avenue to construct hierarchical and porous ordered metamaterials.

9.
J Am Chem Soc ; 143(4): 1790-1797, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33467847

RESUMEN

Anisotropic colloidal particles are important building blocks for the studies of self-assembly, which are visualized models for basic research and can be used to construct structured materials. Discs are one of the most typical anisotropic colloids; however, the synthesis of monodisperse colloidal discs with well-defined shape remains a challenge. Here we report a novel strategy for synthesizing polymeric discs based on frame-guided droplet shrinkage. This was realized by creating frame/liquid core/shell rings and utilizing the shrinking instability of the liquid rings. The resulting disc's shape parameters are tunable. The method is general, is not limited to specific polymers, solvents, and frames, and therefore has the potential to afford a variety of polymer discs. We also demonstrate the possibility of tuning the surface chemistry of the discs through surface-initiated polymerization. The frame-guided droplet shrinkage method opens up a new way to design and fabricate colloidal particles.

10.
Mol Psychiatry ; 25(5): 1006-1021, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31485012

RESUMEN

Chronic stress causes dysregulations of mood and energy homeostasis, but the neurocircuitry underlying these alterations remain to be fully elucidated. Here we demonstrate that chronic restraint stress in mice results in hyperactivity of pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus (POMCARH neurons) associated with decreased neural activities of dopamine neurons in the ventral tegmental area (DAVTA neurons). We further revealed that POMCARH neurons project to the VTA and provide an inhibitory tone to DAVTA neurons via both direct and indirect neurotransmissions. Finally, we show that photoinhibition of the POMCARH→VTA circuit in mice increases body weight and food intake, and reduces depression-like behaviors and anhedonia in mice exposed to chronic restraint stress. Thus, our results identified a novel neurocircuitry regulating feeding and mood in response to stress.


Asunto(s)
Anhedonia , Depresión/metabolismo , Trastornos de Alimentación y de la Ingestión de Alimentos/etiología , Trastornos de Alimentación y de la Ingestión de Alimentos/metabolismo , Vías Nerviosas , Proopiomelanocortina/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Trastornos de Alimentación y de la Ingestión de Alimentos/psicología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología
11.
Proc Natl Acad Sci U S A ; 115(26): 6721-6726, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891653

RESUMEN

During HIV-1 assembly, the retroviral structural protein Gag forms an immature capsid, containing thousands of Gag molecules, at the plasma membrane (PM). Interactions between Gag nucleocapsid (NC) and viral RNA (vRNA) are thought to drive assembly, but the exact roles of these interactions have remained poorly understood. Since previous studies have shown that Gag dimer- or trimer-forming mutants (GagZiL) lacking an NC domain can form immature capsids independent of RNA binding, it is often hypothesized that vRNA drives Gag assembly by inducing Gag to form low-ordered multimers, but is dispensable for subsequent assembly. In this study, we examined the role of vRNA in HIV-1 assembly by characterizing the distribution and mobility of Gag and Gag NC mutants at the PM using photoactivated localization microscopy (PALM) and single-particle tracking PALM (spt-PALM). We showed that both Gag and GagZiL assembly involve a similar basic assembly unit, as expected. Unexpectedly, the two proteins underwent different subsequent assembly pathways, with Gag cluster density increasing asymptotically, while GagZiL cluster density increased linearly. Additionally, the directed movement of Gag, but not GagZiL, was maintained at a constant speed, suggesting that the two proteins experience different external driving forces. Assembly was abolished when Gag was rendered monomeric by NC deletion. Collectively, these results suggest that, beyond inducing Gag to form low-ordered multimer basic assembly units, vRNA is essential in scaffolding and maintaining the stability of the subsequent assembly process. This finding should advance the current understanding of HIV-1 and, potentially, other retroviruses.


Asunto(s)
ARN Viral/metabolismo , Imagen Individual de Molécula , Ensamble de Virus/fisiología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Células COS , Chlorocebus aethiops , Difusión , VIH-1/metabolismo , Nucleocápside/metabolismo , Unión Proteica , Dominios Proteicos , Provirus/metabolismo , Proteínas Recombinantes/metabolismo
12.
Environ Sci Technol ; 54(10): 6244-6253, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32323976

RESUMEN

Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection byproducts in drinking water. We found recently that halogenated quinones could enhance the decomposition of hydroperoxides independent of transition-metal ions and formation of the novel quinone enoxy/ketoxy radicals. Here, we show that the major oxidation product was 2-amino-5-[(2-deoxy-ß-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) when the nucleoside 2'-deoxyguanosine (dG) was treated with tetrachloro-1,4-benzoquinone (TCBQ) and t-butyl hydroperoxide (t-BuOOH). The formation of dIz was markedly inhibited by typical radical spin-trapping agents. Interestingly and unexpectedly, we found that the generated quinone enoxy radical played a critical role in dIz formation. Using [15N5]-8-oxodG, dIz was found to be produced either directly from dG or through the transient formation of 8-oxodG. Based on these data, we proposed that the production of dIz might be through an unusual haloquinone-enoxy radical-mediated mechanism. Analogous results were observed in the oxidation of ctDNA by TCBQ/t-BuOOH and when t-BuOOH was substituted by the endogenously generated physiologically relevant hydroperoxide 13S-hydroperoxy-9Z,11E-octadecadienoic acid. This is the first report that halogenated quinoid carcinogens and hydroperoxides can induce potent oxidation of dG to the more mutagenic product dIz via an unprecedented quinone-enoxy radical-mediated mechanism, which may partly explain their potential carcinogenicity.


Asunto(s)
Desinfección , Mutágenos , ADN , Imidazoles , Oxidación-Reducción , Fenantrenos
13.
Biomed Eng Online ; 18(1): 11, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704488

RESUMEN

BACKGROUND: Docetaxel (DTX) is an anticancer drug that is currently formulated with polysorbate 80 and ethanol (50:50, v/v) in clinical use. Unfortunately, this formulation causes hypersensitivity reactions, leading to severe side-effects, which have been primarily attributed to polysorbate 80. METHODS: In this study, a DTX-loaded human serum albumin (HSA) nanoparticle (DTX-NP) was designed to overcome the hypersensitivity reactions that are induced by polysorbate 80. The methods of preparing the DTX-NPs have been optimized based on factors including the drug-to-HSA weight ratio, the duration of HSA incubation, and the choice of using a stabilizer. Synthesized DTX-NPs were characterized with regard to their particle diameters, drug loading capacities, and drug release kinetics. The morphology of the DTX-NPs was observed via scanning electron microscopy (SEM) and the successful preparation of DTX-NPs was confirmed via differential scanning calorimetry (DSC). The cytotoxicity and cellular uptake of DTX-NPs were investigated in the non-small cell lung cancer cell line A549 and the maximum tolerated dose (MTD) of DTX-NPs was evaluated via investigations with BALB/c mice. RESULTS: The study showed that the loading capacity and the encapsulation efficiency of DTX-NPs prepared under the optimal conditions was 11.2 wt% and 63.1 wt%, respectively and the mean diameter was less than 200 nm, resulting in higher permeability and controlled release. Similar cytotoxicity against A549 cells was exhibited by the DTX-NPs in comparison to DTX alone while higher maximum tolerated dose (MTD) with the DTX-NPs (75 mg/kg) than with DTX (30 mg/kg) was demonstrated in mice, suggesting that the DTX-NPs prepared with HSA yielded similar anti-tumor activity but were accompanied by less systemic toxicity than solvent formulated DTX. CONCLUSIONS: DTX-NPs warrant further investigation and are promising candidates for clinical applications.


Asunto(s)
Docetaxel/química , Portadores de Fármacos/química , Nanopartículas/química , Albúmina Sérica Humana/química , Células A549 , Transporte Biológico , Técnicas de Química Sintética , Docetaxel/farmacología , Portadores de Fármacos/síntesis química , Portadores de Fármacos/metabolismo , Liberación de Fármacos , Humanos , Nanotecnología , Albúmina Sérica Humana/síntesis química , Albúmina Sérica Humana/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(34): 9545-50, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27486249

RESUMEN

The genome-wide depletion of 5-methylcytosines (5meCs) caused by passive dilution through DNA synthesis without daughter strand methylation and active enzymatic processes resulting in replacement of 5meCs with unmethylated cytosines is a hallmark of primordial germ cells (PGCs). Although recent studies have shown that in vitro differentiation of pluripotent stem cells (PSCs) to PGC-like cells (PGCLCs) mimics the in vivo differentiation of epiblast cells to PGCs, how DNA methylation status of PGCLCs resembles the dynamics of 5meC erasure in embryonic PGCs remains controversial. Here, by differential detection of genome-wide 5meC and 5-hydroxymethylcytosine (5hmeC) distributions by deep sequencing, we show that PGCLCs derived from mouse PSCs recapitulated the process of genome-wide DNA demethylation in embryonic PGCs, including significant demethylation of imprint control regions (ICRs) associated with increased mRNA expression of the corresponding imprinted genes. Although 5hmeCs were also significantly diminished in PGCLCs, they retained greater amounts of 5hmeCs than intragonadal PGCs. The genomes of both PGCLCs and PGCs selectively retained both 5meCs and 5hmeCs at a small number of repeat sequences such as GSAT_MM, of which the significant retention of bisulfite-resistant cytosines was corroborated by reanalysis of previously published whole-genome bisulfite sequencing data for intragonadal PGCs. PSCs harboring abnormal hypermethylation at ICRs of the Dlk1-Gtl2-Dio3 imprinting cluster diminished these 5meCs upon differentiation to PGCLCs, resulting in transcriptional reactivation of the Gtl2 gene. These observations support the usefulness of PGCLCs in studying the germline epigenetic erasure including imprinted genes, epimutations, and erasure-resistant loci, which may be involved in transgenerational epigenetic inheritance.


Asunto(s)
Desmetilación del ADN , Epigénesis Genética , Genoma , Impresión Genómica , Células Germinativas/metabolismo , Células Madre Pluripotentes/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Proteínas de Unión al Calcio , Metilación de ADN , Embrión de Mamíferos , Femenino , Células Germinativas/citología , Secuenciación de Nucleótidos de Alto Rendimiento , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Ratones , Mutación , Células Madre Pluripotentes/citología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
15.
Molecules ; 24(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652679

RESUMEN

Kiwifruit is rich in vitamins, minerals, dietary fiber and other functional components, and it has long been used as a functional food to treat intestinal ailments such as constipation. The current research made full use of the kiwifruit, the juice was prepared by microencapsulation, and the dietary fiber in kiwifruit pomace was modified by enzymatic hydrolysis and grinding, then, the two were mixed to obtain an ultra-micro kiwifruit powder (UKP). In addition, the laxative effect of the UKP was verified by a diphenoxylate induced constipated mice model. The results demonstrated that compared with the raw samples, the retention rate of vitamin C, lutein and catechin in UKP were 83.3%, 81.9% and 88.3%, respectively, thus effectively avoiding the loss of functional components during the processing of kiwifruit. Moreover, α-amylase, protease and the ball milling process effectively reduced the size of dietary fiber in kiwifruit pomace, and its water-holding capacity (WHC), oil-holding capacity (OHC) and swelling capacity (SWC) were enhanced by 1.26, 1.65 and 1.10 times, respectively. Furthermore, to analyze the laxative effect of the UKP, a constipation mice model was established by diphenoxylate treatment (5 mg·kg-1, i.g.) for the last week, with or without UKP supplementation (2.4 g·kg-1 B.W. per day) for 4 weeks. The results demonstrated that UKP significantly increased feces condition (fecal output and dejecta moisture content, gut transit (the intestinal propulsion rates) and substance P (SP) levels in portal vein plasma, and it decreased the whole gut transit time and mucinogen granules secreted by goblet cell in constipated mice.


Asunto(s)
Actinidia/química , Fibras de la Dieta , Frutas/química , Laxativos , Extractos Vegetales/química , Animales , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Estreñimiento/patología , Laxativos/química , Laxativos/farmacología , Masculino , Ratones
16.
J Neurochem ; 146(6): 703-721, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29939407

RESUMEN

Menopause, a risk factor for brain dysfunction in women, is characterized by neuropsychological symptoms including depression and dementia, which are closely related to alterations in different brain regions after menopause. However, little is known about the variability in pathophysiologic changes associated with menopause in the brain. Here, we observed that menopause in rats induced by bilateral ovariectomy (OVX) showed depressive and dementia-related behaviors along with neuronal loss in the prefrontal cortex (PFC), hippocampus (HIP), hypothalamus (HYP), and amygdala (AMY) by Nissl staining. Meanwhile, by immunohistochemical staining, increased microglia in the HIP and AMY and increased astrocytes in the PFC, HYP, and AMY were shown. Using quantitative proteomics, we identified 146 differentially expressed proteins in the brains of OVX rats, for example, 20 in the PFC, 41 in the HIP, 17 in the HYP, and 79 in the AMY, and performed further detection by western blotting. A link between neuronal loss and apoptosis was suggested, as evidenced by increases in adenylate kinase 2 (AK2), B-cell lymphoma 2 associated X (Bax), cleaved caspase 3, and phosphorylated p53 and decreases in Huntingtin-interacting protein K, hexokinase, and phosphorylated B-cell lymphoma 2 (Bcl-2), and apoptosis might be triggered by endoplasmic reticulum stress (probed by increased glucose-regulated protein 78 (GRP78), cleaved caspase 12, phosphorylated protein kinase R (PKR)-like endoplasmic reticulum kinase, inositol-requiring enzyme-1 and activating transcription factor 6), and mitochondrial dysfunction (probed by increased cytochrome c and cleaved caspase 3 and decreased sideroflexin-1 (SFXN1) and NADH dehydrogenase (ubiquinone) 1 α subcomplex 11 (NDUFA11)). Activation of autophagy was also indicated by increased autophagy-related 7, γ-aminobutyric acid (GABA) receptor-associated protein-like 2, and oxysterol-binding protein-related protein 1 and confirmed by increased microtubule-associated protein light chain 3 (LC3II/I), autophagy-related 5, and Beclin1 in the HIP and AMY. In the AMY, which is important in emotion, higher GABA transporter 3 and lower vesicular glutamate transporter 1 levels indicated an imbalance between excitatory and inhibitory neurotransmission, and the increased calretinin and decreased calbindin levels suggested an adjustment of GABAergic transmission after OVX. In addition, cytoskeletal abnormalities including tau hyperphosphorylation, dysregulated Ca²+ signals, and glutamic synaptic impairments were observed in the brains of OVX rats. Collectively, our study showed the changes in different brain regions related to depression and dementia during menopause.


Asunto(s)
Encéfalo/metabolismo , Demencia/etiología , Demencia/patología , Depresión/etiología , Depresión/patología , Ovariectomía/efectos adversos , Animales , Autofagia/fisiología , Proteínas de Unión al Calcio/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Estradiol/sangre , Femenino , Regulación de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteómica , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Factores de Tiempo
17.
Biochem Biophys Res Commun ; 499(1): 66-70, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29555473

RESUMEN

Non-alcoholic fatty liver disease and steatohepatitis (NAFLD and NASH) account for the majority of liver disease in industrialized countries. However, the pathogenesis still unclear. Long non-coding RNAs (lncRNAs) has been reported to be involved in various pathophysiological processes. Here, we reported a novel role of lncARSR in hepatic lipogenesis in NAFLD. The expression of lncARSR was induced both in NAFLD patients and mouse model, as well as in hepatocytes treated with fatty acid. Moreover, overexpression of lncARSR enhanced while knockdown of lncARSR ameliorated hepatic lipid accumulation in vivo and in vitro. Furthermore, the expression of genes related to fatty acid synthesis and oxidation increased with lncARSR overexpression in vivo. Mechanistically, we identified that lncARSR regulated hepatic lipogenesis via upregulating SREBP-1c, the key regulatory molecule involved in lipogenesis. Knockdown of SREBP-1c by shRNA blocked the effect of lncARSR on lipogenesis. Furthermore, we demonstrated that lncARSR regulated SREBP-1c expression by PI3K/Akt pathway. In conclusion, our data indicated that lncARSR potentially contributes to the hepatic steatosis in NAFLD, which may be a new therapeutic target against NAFLD.


Asunto(s)
Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Lipogénesis/genética , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Oligorribonucleótidos Antisentido/genética , Oligorribonucleótidos Antisentido/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
18.
Molecules ; 23(6)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891801

RESUMEN

Sambucus williamsii Hance has been used in fractures for thousands of years, but research on its active components, such as morroniside, until now had not been carried out. In this study, morroniside was taken as the leading compound, and fourteen derivatives were synthesized. The promotion of osteoblast proliferation effect of the derivatives was evaluated on MC3T3-E1 cells. Five derivatives (2, 3, 4, 5, and 14) showed a good proliferation effect on MC3T3-E1 cells, and their promoted expression effects on OC (Osteocalcin) and ALP (Alkaline phosphatase) in MC3T3-E1 cells were measured. Compound 3 was shown to have the strongest proliferation effect (EC50 = 14.78 ± 1.17 µg/mL) and to significantly promote the expression of OC and ALP.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Glicósidos/farmacología , Osteoblastos/efectos de los fármacos , Células 3T3 , Animales , Espectroscopía de Resonancia Magnética , Ratones , Osteoblastos/citología
19.
Plant Physiol ; 171(2): 1344-54, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208222

RESUMEN

Salicylic acid (SA) serves as a critical signaling molecule in plant defense. Two transcription factors, SARD1 and CBP60g, control SA biosynthesis through regulating pathogen-induced expression of Isochorismate Synthase1, which encodes a key enzyme for SA biosynthesis. Here, we report that Pattern-Triggered Immunity Compromised Receptor-like Cytoplasmic Kinase1 (PCRK1) and PCRK2 function as key regulators of SA biosynthesis. In the pcrk1 pcrk2 double mutant, pathogen-induced expression of SARD1, CBP60g, and ICS1 is greatly reduced. The pcrk1 pcrk2 double mutant, but neither of the single mutants, exhibits reduced accumulation of SA and enhanced disease susceptibility to bacterial pathogens. Both PCRK1 and PCRK2 interact with the pattern recognition receptor FLS2, and treatment with pathogen-associated molecular patterns leads to rapid phosphorylation of PCRK2. Our data suggest that PCRK1 and PCRK2 function downstream of pattern recognition receptor in a signal relay leading to the activation of SA biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Ácido Salicílico/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Sitios de Unión , Secuencia Conservada , ADN Bacteriano/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutación/genética , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosforilación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas Quinasas/metabolismo , Pseudomonas syringae/fisiología
20.
Chem Res Toxicol ; 29(10): 1699-1705, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27611113

RESUMEN

The phenolic hydroxyl group of tyrosine residue plays a crucial role in the structure and function of many proteins. However, little study has been reported about its modification by chemical agents under physiological conditions. In this study, we found, unexpectedly, that the phenolic hydroxyl group of tyrosine can be rapidly and efficiently modified by tetrafluoro-1,4-benzoquinone and other polyhalogenated quinones, which are the major genotoxic and carcinogenic quinoid metabolites of polyhalogenated aromatic compounds. The modification was found to be mainly due to the formation of a variety of fluoroquinone-O-tyrosine conjugates and their hydroxylated derivatives via nucleophilic substitution pathway. Analogous modifications were observed for tyrosine-containing peptides. Further studies showed that the blockade of the reactive phenolic hydroxyl group of tyrosine in the substrate peptide, even by very low concentration of tetrafluoro-1,4-benzoquinone, can prevent the kinase catalyzed tyrosine phosphorylation. This is the first report showing the exceptionally facile chemical modification of the phenolic hydroxyl group of tyrosine by polyhalogenated quinones under normal physiological conditions, which may have potential biological and toxicological implications.


Asunto(s)
Hidróxidos/química , Fenoles/química , Quinonas/química , Tirosina/química , Estructura Molecular , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA