Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Langmuir ; 40(21): 11239-11250, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38751154

RESUMEN

Water is the lifeblood of everything on earth, nourishing and nurturing all forms of life, while also contributing to the development of civilization. However, with the rapid development of economic construction, especially the accelerated process of modern industrialization, the pollution of oily sewage is becoming increasingly serious, affecting the ecological balance and human health. The efficient elimination of pollutants in sewage is, therefore, particularly urgent. In this paper, a core-shell microbial reactor (MPFA@CNF-SA-AM) was fabricated by using nanocellulose and sodium alginate (SA) particles embedded with microorganisms as the core and lipophilic and hydrophobic fly ash as the outer shell layer. Compared with that of free microorganisms and cellulose and SA aerogel pellets loading with microorganisms (CNF-SA-AM), which has a degradation efficiency of 60.69 and 82.89%, respectively, the MPFA@CNF-SA-AM possesses a highest degradation efficiency of 90.60% within 240 h. So that this self-floating microbial reactor has selective adsorption properties to achieve oil-water separation in oily wastewater and high effective degradation of organic pollutants with low cost. The adsorption curves of MPFA@CNF-SA-AM for diesel and n-hexadecane were studied. The results showed that the adsorption follows the Freundlich model and is a multimolecular layer of physical adsorption. In addition, the degradation mechanism of diesel oil was studied by gas chromatography-mass spectrometry. The results showed that diesel oil was selectively adsorbed to the interior of MPFA@CNF-SA-AM, and it was degraded by enzymes in microorganisms into n-hexadecanol, n-hexadecaldehyde, and n-hexadecanoic acid in turn, and finally converted to water and carbon dioxide. Compared with existing oily wastewater treatment methods, this green and pollution-free dual-functional core-shell microbial reactor has the characteristics of easy preparation, high efficiency, flexibility, and large-scale degradation. It provides a new, effective green choice for oily wastewater purification and on-site oil spill accidents.


Asunto(s)
Aguas Residuales , Adsorción , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Alginatos/química , Celulosa/química , Aceites/química , Biodegradación Ambiental , Polímeros/química
2.
Langmuir ; 39(42): 14891-14903, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37819843

RESUMEN

With the frequent occurrence of offshore oil spills, the effective separation and treatment of oily wastewater are essential to the environment. In this work, the core-shell bioreactor (abbreviated as Fe3O4/MHNTs-CNF@aerogel) was prepared with a core composed of camphor leaf cellulose-based aerogels for loading microorganisms and a shell derived from hydrophobic silane-modified halloysite doping with Fe3O4 for selective absorption of oil and maganetic recycling. The core-shell-structured bioreactor Fe3O4/MHNTs-CNF@aerogel has excellent self-floating properties and can float on water for up to 100 days. The whole core-shell structure not only has excellent oil/water separation performance but also has good microbial degradation performance. By applying it in water containing 5% diesel for the biodegradation test, the biodegradation efficiency of Fe3O4/MHNTs-CNF@aerogel for diesel can reach 82.4% in 10 days. The efficiency was 20% higher than for free microorganisms, and it still had excellent degradation ability after three degradation cycles, with a degradation rate of over 75%. In addition, the result obtained from the study on environmental tolerance shows that Fe3O4/MHNTs-CNF@aerogel possessed a strong tolerance ability under different pH and salinity conditions. The Fe3O4/MHNTs-CNF@aerogel also has superior mechanical properties; i.e., nearly no deformation occurs at 30 kPa. Compared with those conventional oil/water separation materials which can only absorb or separate the oils for water with limited capacity and taking the risk of secondary contamination, our core-shell-structured bioreactor is capable of not only selectively absorbing oil from water through its hydrophobic shell but also degrading it into a nontoxic substance by its microorganism-loaded core, thus showing great potential for practical application in oily wastewater treatment.


Asunto(s)
Aceites , Purificación del Agua , Aceites/química , Interacciones Hidrofóbicas e Hidrofílicas , Biodegradación Ambiental , Fenómenos Magnéticos
3.
Int J Biol Macromol ; : 133477, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942413

RESUMEN

The highly efficient removal of oils such as oils or dyes from wastewater has aroused wide concern and is of great significance for clean production and environmental remediation. The synthesis of a novel aerogel (designated as HEC/LS) is reported herein, achieved through a sol-gel method followed by freeze-drying utilizing loofa and hydroxyethyl cellulose as the raw materials. The new HEC/LS aerogel exhibits excellent porosity and specific surface area, with a porosity of 88.70 %, a total pore area of 0.607 m2 g-1, and a specific surface area of 230 m2 g-1. The prepared HEC/LS aerogel exhibits exceptional hydrophilicity and self-floatability, facilitating its rapid absorption of water up to 21 times its own weight within a mere 3 s. Additionally, it demonstrates good adsorption performance for methylene blue (MB), with a maximum adsorption capacity of 83.30 mg g-1. Subsequently, a new hydrophobic microorganisms-loaded composite aerogel (namely, Bn-HEC/LS) was obtained by doping microorganisms into the as-prepared HEC/LS in multiple enrichment followed by a hydrophobic and oleophilic surface modification. Based on its rich porous structure and oleophilic wettability, the as-synthesized Bn-HEC/LS exhibits excellent selective adsorption and degradation properties for the oil contamination, the diesel oil could be selectively absorbed in the Bn-HEC/LS and degraded by the loaded microorganisms. Among them, B5-HEC/LS displays the highest removal efficiency of 94.50 % within 180 h, while free microorganisms and HEC/LS aerogels show degradation efficiencies of only 21.70 % and 48.10 %, respectively. The fixation of microorganisms in the aerogel increases their number within the material and enhances the relative microorganisms removal capacity. The hydrophobic and lipophilic modifications improve the selective adsorption performance of the aerogel on diesel oil, resulting in a significantly high removal rate of Bn-HEC/LS for diesel oil. The results indicate that the immobilization of microorganisms into aerogel improves the activity of microorganisms, and the hydrophobic and oleophilic modification enhances the selective adsorption performance of aerogel to diesel oil, thus resulting in a very high removal rate of Bn-HEC/LS for diesel oil. This study is expected to provide a now possibility for the green and efficient bioremediation of oils.

4.
J Colloid Interface Sci ; 636: 291-304, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638569

RESUMEN

The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m-1 K-1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m-2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h-1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.

5.
Arch Environ Occup Health ; 76(4): 188-209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32787549

RESUMEN

The rate of coal mine accidents in China is still high and most coal mine accidents are caused by human unsafe behavior, and the correction of the behavior is, therefore, paramount. In this article, a group dynamics field model and a hierarchical index system of the group dynamics factors of the unsafe behavior of coal miners are established. The internal and external dynamics of groups are analyzed and the importance of each factor is calculated and determined. On this basis, suggested correction measures are put forward. Then, in combination with a questionnaire, the corrective measures of unsafe behaviors are determined and simulated. The results show that, while the correction of unsafe behaviors both in progress and after implementation can achieve good results, the former is more effective than the latter. Via the present research, both unsafe behaviors and the occurrence of coal mine accidents can be effectively prevented, and the safety of coal mine production can be ensured.


Asunto(s)
Conducta Peligrosa , Procesos de Grupo , Mineros/psicología , Salud Laboral , Accidentes de Trabajo/prevención & control , Accidentes de Trabajo/psicología , China/epidemiología , Minas de Carbón , Humanos , Modelos Psicológicos , Administración de la Seguridad
6.
Transbound Emerg Dis ; 66(6): 2411-2425, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31328387

RESUMEN

Since 2014, H5 highly pathogenic avian influenza viruses (HPAIVs) from clade 2.3.4.4 have been persistently circulating in Southern China. This has caused huge losses in the poultry industry. In this study, we analysed the genetic characteristics of seven H5N6 HPAIVs of clade 2.3.4.4 that infected birds in Southern China in 2016. Phylogenetic analysis grouped the HA, PB2, PA, M and NS genes as MIX-like, and the NA genes grouped into the Eurasian lineage. The PB1 genes of the GS24, GS25, CK46 and GS74 strains belonged to the VN 2014-like group and the others were grouped as MIX-like. The NP genes of GS24 and GS25 strains belonged to the ZJ-like group, but the others were MIX-like. Thus, these viruses came from different genotypes, and the GS24, GS25, CK46 and GS74 strains displayed genotype recombination. Additionally, our results showed that the mean death time of all chickens inoculated with 105 EID50 of CK46 or GS74 viruses was 3 and 3.38 days, respectively. The viruses replicated at high titers in all tested tissues of the inoculated chickens. They also replicated in all tested tissues of naive contact chickens, but their replication titers in some tissues were significantly different (p < 0.05). Thus, the viruses displayed high pathogenicity and variable transmission in chickens. Therefore, it is necessary to focus on the pathogenic variation and molecular evolution of H5N6 HPAIVs in order to prevent and control avian influenza in China.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Animales , Pollos/virología , China , Evolución Molecular , Genotipo , Virus de la Influenza A/clasificación , Filogenia , Recombinación Genética , Replicación Viral
7.
Viruses ; 11(7)2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277451

RESUMEN

Highly pathogenic avian influenza H5N6 viruses have been circulating in poultry in Asia since 2013 and producing serious diseases in chickens. Here, we analyzed the genetic properties of 10 H5N6 subtypes AIVs from geese in 2015-2016 in Guangdong province. Phylogenic analysis showed that all HA genes of the 10 viruses belonged to clade 2.3.4.4, and their genes including HA, PA, PB1, M, NP, and NS all derived from Mix-like 1 (CH, VN, LS). Their PB2 genes come from Mix-like 2 (CH, VN, JP). The NA genes were classified into a Eurasian lineage. Therefore, the 10 viruses likely originate from the same ancestor and were all recombinant viruses between different genotypes. We selected A/Goose/Guangdong/GS144/2015(H5N6) (GS144) and A/Goose/Guangdong/GS148/2016(H5N6) (GS148) viruses to inoculate 5-week-old chickens intranasally with 104 EID50/0.1 mL dose intranasally to assess their pathogenicity and transmissibility. Inoculated chickens showed that the GS144 virus caused systematic infection with a lethality of 100%, but the lethality of GS148 virus was 0%. The two viruses were efficiently transmitted to contact chickens. The lethality of GS144 and GS148 virus in contact with chickens was 87.5% and 0%, respectively, which suggests that the transmissibility of GS144 virus was stronger than GS148 virus in chickens. Thus, different H5N6 viruses from the same waterfowl can show different pathogenicity and transmissibility in chickens. Continued surveillance and characteristic analysis of the H5N6 viruses will help us to keep abreast of evolution and variation in avian influenza viruses in the future.


Asunto(s)
Pollos/virología , Gansos/virología , Subtipo H5N8 del Virus de la Influenza A/clasificación , Gripe Aviar/transmisión , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Animales , Modelos Animales de Enfermedad , Genotipo , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Sistemas de Lectura Abierta , Filogenia , Carga Viral , Virulencia
8.
Front Immunol ; 9: 789, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706970

RESUMEN

H7N9 viruses pose a threat to human health and they are no less harmful to the poultry industry than the H5N1 avian influenza viruses. However, the pathogenesis, transmissibility, and the host immune response of the H7N9 virus in chickens and mice remain unclear. In this study, we found that H7N9 viruses replicated in multiple organs of the chicken and viral shedding persisted up to 30 days postinoculation (DPI). The viruses were efficiently transmitted between chickens through direct contact. Notably, chickens infected with H7N9 had high antibody levels throughout the entire observation period and their antibody response lasted for 30 DPI. The expression levels of the pattern-recognition receptors and pro-inflammatory cytokines were found to be significantly upregulated in the brain using quantitative real-time PCR. The expression of TLR3, TLR7, MDA5, Mx, IL-1ß, IL-6, IFN-α, and IFN-γ were also significantly different in the lungs of infected chickens. We found that the viruses isolated from these birds had low pathogenicity in mice, produced little weight loss and could only replicate in the lungs. Our findings suggested that the H7N9 viruses could replicate in chickens and mice and be efficiently transmitted between chickens, which presented a significant threat to human and poultry health.


Asunto(s)
Pollos/virología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Animales , Ratones
9.
Artículo en Inglés | MEDLINE | ID: mdl-28770175

RESUMEN

We analyzed five H5N1 avian influenza viruses (AIVs) isolated from different birds in 2012 in China. Based on whole-genome sequences, we divided the viruses into four genotypes. The DKE26, GSE43, and DKE53 viruses belonged to Genotypes 1-3, respectively. The CKE93 and CKE96 viruses were classified into Genotype 4. Genotypes 1-3 correspond to the viruses containing the HA gene of clade 2.3.2, and Genotype 4 is the virus that bears the HA gene of clade 7.2. To better understand the pathogenicity and transmission of the viruses, we infected chickens with 103 EID50/0.1 ml GSE43 (clade 2.3.2) or CKE93 (clade 7.2) virus. Our results revealed that 6 of 7 specific-pathogen-free (SPF) chickens inoculated with GSE43 virus were dead before 7-day post-infection, but all the SPF chickens inoculated with CKE93 virus survived the infection. Both the GSE43 and CKE93 viruses replicated systemically in chickens. The virus titers of GSE43 virus in tested organs were obviously higher than those of CKE93 virus. Our results revealed that the pathogenicity and replication of GSE43 in chickens was much higher than those of CKE93. The GSE43 virus could transmit between chickens, but the CKE93 could not transmit between chickens by naïve contact. Therefore, different clades of H5N1 AIVs possessed variable pathogenicities and transmission abilities among chickens. Our study contributes to knowledge of pathogenic variations of prevalent H5N1 viruses.


Asunto(s)
Variación Genética , Genotipo , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Filogenia , Estructuras Animales/virología , Animales , Pollos , China , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/mortalidad , Análisis de Supervivencia , Carga Viral , Virulencia , Secuenciación Completa del Genoma
10.
Front Microbiol ; 7: 1068, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458456

RESUMEN

Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

11.
Front Microbiol ; 7: 754, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242767

RESUMEN

New reassortant H5N6 highly pathogenic avian influenza viruses (AIVs) were isolated from apparently healthy domestic ducks in Southern China in 2014. Our results show that the viruses grew efficiently in eggs and replicated systemically in chickens. They were completely lethal in chicken (100% mortality), and the mean death time was 6 to 7 days post-inoculation. The viruses could transmit in chickens by naïve contact. BLAST analysis revealed that their HA gene was most closely related to A/wild duck/Shangdong/628/2011 (H5N1), and their NA genes were most closely related to A/swine/Guangdong/K6/2010 (H6N6). The other genes had the highest identity with A/wild duck/Fujian/1/2011(H5N1). The results of phylogenetic analysis showed that their HA genes clustered into clade 2.3.4.4 of the H5N1 viruses and all genes derived from H5 were Mix-like or H6-like viruses. Thus, the new H5N6 viruses were reassortmented of H5N1 and H6N6 virus. Therefore, the circulation of the new H5N6 AIVs may become a threat to poultry and human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA