Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193961

RESUMEN

Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub-5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 µs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.


Asunto(s)
Técnicas Biosensibles/métodos , Diamante/química , Nanotecnología/métodos , Técnicas Biosensibles/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Nanopartículas/química , Nitrógeno/química
2.
Opt Lett ; 49(13): 3785-3788, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950267

RESUMEN

Photonics in the ultraviolet provides an avenue for key advances in biosensing, pharmaceutical research, and environmental sensing. However, despite recent progress in photonic integration, a technological solution to fabricate photonic integrated circuits (PICs) operating in the UV-C wavelength range, namely, between 200 and 280 nm, remains elusive. Filling this gap will open opportunities for new applications, particularly in healthcare. A major challenge has been to identify materials with low optical absorption loss in this wavelength range that are at the same time compatible with waveguide design and large-scale fabrication. In this work, we unveil that thermal silicon oxide (TOX) on a silicon substrate is a potential candidate for integrated photonics in the UV-C, by removing the silicon substrate under selected regions to form single-side suspended ridge waveguides. We provide design guidelines for low-loss waveguide geometries, avoiding wrinkling due to residual intrinsic stress, and experimentally demonstrate waveguides that exhibit optical propagation losses below 3 and 4 dB/cm at a wavelength of 266 nm with claddings of air and water, respectively. This result paves the way for on-chip UV-C biological sensing and imaging.

3.
Opt Express ; 31(4): 6540-6551, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823907

RESUMEN

Ring resonators are a vital element for filters, optical delay lines, or sensors in silicon photonics. However, reconfigurable ring resonators with low-power consumption are not available in foundries today. We demonstrate an add-drop ring resonator with the independent tuning of round-trip phase and coupling using low-power microelectromechanical (MEMS) actuation. At a wavelength of 1540 nm and for a maximum voltage of 40 V, the phase shifters provide a resonance wavelength tuning of 0.15 nm, while the tunable couplers can tune the optical resonance extinction ratio at the through port from 0 to 30 dB. The optical resonance displays a passive quality factor of 29 000, which can be increased to almost 50 000 with actuation. The MEMS rings are individually vacuum-sealed on wafer scale, enabling reliable and long-term protection from the environment. We cycled the mechanical actuators for more than 4 × 109 cycles at 100 kHz, and did not observe degradation in their response curves. On mechanical resonance, we demonstrate a modulation increase of up to 15 dB, with a voltage bias of 4 V and a peak drive amplitude as low as 20 mV.

4.
Opt Express ; 31(24): 40166-40178, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38041323

RESUMEN

Integrated microring resonators are well suited for wavelength-filtering applications in optical signal processing, and cascaded microring resonators allow flexible filter design in coupled-resonator optical waveguide (CROW) configurations. However, the implementation of high-order cascaded microring resonators with high extinction ratios (ERs) remains challenging owing to stringent fabrication requirements and the need for precise resonator tunability. We present a fully integrated on-chip second-order CROW filter using silicon photonic microelectromechanical systems (MEMS) to adjust tunable directional couplers and a phase shifter using nanoscale mechanical out-of-plane waveguide displacement. The filter can be fully reconfigured with regard to both the ER and center wavelength. We experimentally demonstrated an ER exceeding 25 dB and continuous wavelength tuning across the full free spectral range of 0.123 nm for single microring resonator, and showed reconfigurability in second-order CROW by tuning the ER and resonant wavelength. The tuning energy for an individual silicon photonic MEMS phase shifter or tunable coupler is less than 22 pJ with sub-microwatt static power consumption, which is far better than conventional integrated phase shifters based on other physical modulation mechanisms.

5.
Opt Lett ; 46(22): 5671-5674, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780433

RESUMEN

Programmable photonic integrated circuits are emerging as an attractive platform for applications such as quantum information processing and artificial neural networks. However, current programmable circuits are limited in scalability by the lack of low-power and low-loss phase shifters in commercial foundries. Here, we demonstrate a compact phase shifter with low-power photonic microelectromechanical system (MEMS) actuation on a silicon photonics foundry platform (IMEC's iSiPP50G). The device attains (2.9π±π) phase shift at 1550 nm, with an insertion loss of (0.33-0.10+0.15)dB, a Vπ of (10.7-1.4+2.2)V, and an Lπ of (17.2-4.3+8.8)µm. We also measured an actuation bandwidth f-3dB of 1.03 MHz in air. We believe that our demonstration of a low-loss and low-power photonic MEMS phase shifter implemented in silicon photonics foundry compatible technology lifts a main roadblock toward the scale-up of programmable photonic integrated circuits.

6.
Opt Lett ; 45(13): 3458-3461, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630871

RESUMEN

We demonstrate the design, fabrication, and experimental characterization of near-field binary phase transmission diffractive optical elements (DOEs) in single crystal diamond. Top-hat and arbitrary pattern DOE beam shapers were numerically optimized using an iterative Fourier transform algorithm (IFTA). Commercially available single crystal diamond plates (3mm×3mm×0.3mm) were patterned using hardmask deposition (α-Si), e-beam lithography, and O2 plasma-based diamond reactive ion etching. The resulting binary phase relief patterns were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Experimental characterization of the single crystal diamond DOEs in transmission at λ=532nm confirms excellent uniformity of the resulting top-hat beam profile as required in copper welding applications.

7.
Opt Lett ; 45(11): 2997-3000, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32479442

RESUMEN

Directional couplers are extensively used in photonic integrated circuits as basic components for efficient on-chip photonic signal routing. Conventionally, directional couplers are fully encapsulated in the technology's waveguide cladding material. In this Letter, we demonstrate a compact broadband directional coupler, fully suspended in air and exhibiting efficient power coupling in the cross state. The coupler is designed and built based on IMEC's iSiPP50G standard platform, and hydrofluoric (HF) vapor-etching-based post-processing allows to release the freestanding component. A low insertion loss of 0.5 dB at λ=1560nm and a 1 dB bandwidth of 35 nm at λ=1550nm have been confirmed experimentally. With a small footprint of 20µm×30µm and high mechanical stability, this directional coupler can serve as a basic building block for large-scale silicon photonic microelectromechanical systems (MEMS) circuits.

8.
Opt Express ; 27(21): 30371-30379, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684285

RESUMEN

We demonstrate a novel method for fabricating single crystal diamond diffraction gratings based on crystallographic etching that yields high-quality diffraction gratings from commercially available <100> diamond plates. Both V-groove and rectangular gratings were fabricated and characterised using scanning electron microscopy and atomic force microscopy, revealing angles of 57° and 87° depending on the crystal orientation, with mean roughness below Ra = 5 nm on the sidewalls. The gratings were also optically characterised, showing good agreement with simulated results. The fabrication method demonstrated in this contribution shows the way for manufacturing high-quality diamond diffractive components that surpass existing devices both in quality and manufacturability.

9.
Opt Express ; 27(13): 18959-18969, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31252830

RESUMEN

We present a design for an analog phase shifter based on Silicon Photonic MEMS technology. The operation principle is based on a two-step parallel plate electrostatic actuation mechanism to bring a vertically movable suspended tapered waveguide in a first step into proximity of the bus waveguide and to tune the phase of the propagating coupled mode in a second step by actuation of the suspended waveguide to tune the vertical gap. In the coupled state, the effective index of the optical supermode and the total accumulated phase delay can be varied by changing the vertical separation between the adiabatically tapered suspended and the fixed bus waveguides. Simulations predict that π phase shift can be achieved with an actuation voltage of 19 V, corresponding to a displacement of 19 nm. With an adiabatic coupler geometry, the optical signal can be coupled between the moving waveguide and the bus waveguide with low loss in a wide wavelength range from 1.5 µm to 1.6 µm keeping the average insertion loss below 0.3 dB.

11.
ACS Photonics ; 10(6): 1882-1889, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37363628

RESUMEN

Reflectivity modulation is a critical feature for applications in telecommunications, 3D imaging and printing, advanced laser machining, or portable displays. Tunable metasurfaces have recently emerged as a promising implementation for miniaturized and high-performance tunable optical components. Commonly, metasurface response tuning is achieved by electro-optical effects. In this work, we demonstrate reflectivity modulation based on a nanostructured, mechanically tunable, metasurface, consisting of an amorphous silicon nanopillar array and a suspended amorphous silicon membrane with integrated electrostatic actuators. With a membrane displacement of only 150 nm, we demonstrate reflectivity modulation by Mie resonance enhanced absorption in the pillar array, leading to a reflectivity contrast ratio of 1:3 over the spectral range from 400-530 nm. With fast, low-power electrostatic actuation and a broadband response in the visible spectrum, this mechanically tunable metasurface reflectivity modulator could enable high frame rate dynamic reflective displays.

12.
Sci Rep ; 13(1): 5909, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041255

RESUMEN

Monitoring neuronal activity with simultaneously high spatial and temporal resolution in living cell cultures is crucial to advance understanding of the development and functioning of our brain, and to gain further insights in the origin of brain disorders. While it has been demonstrated that the quantum sensing capabilities of nitrogen-vacancy (NV) centers in diamond allow real time detection of action potentials from large neurons in marine invertebrates, quantum monitoring of mammalian neurons (presenting much smaller dimensions and thus producing much lower signal and requiring higher spatial resolution) has hitherto remained elusive. In this context, diamond nanostructuring can offer the opportunity to boost the diamond platform sensitivity to the required level. However, a comprehensive analysis of the impact of a nanostructured diamond surface on the neuronal viability and growth was lacking. Here, we pattern a single crystal diamond surface with large-scale nanopillar arrays and we successfully demonstrate growth of a network of living and functional primary mouse hippocampal neurons on it. Our study on geometrical parameters reveals preferential growth along the nanopillar grid axes with excellent physical contact between cell membrane and nanopillar apex. Our results suggest that neuron growth can be tailored on diamond nanopillars to realize a nanophotonic quantum sensing platform for wide-field and label-free neuronal activity recording with sub-cellular resolution.


Asunto(s)
Técnicas Biosensibles , Diamante , Hipocampo , Nanoestructuras , Neuronas , Animales , Ratones , Técnicas de Cultivo de Célula , Diamante/química , Mamíferos/anatomía & histología , Nanoestructuras/química , Neuronas/fisiología , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Hipocampo/citología
13.
Nanoscale ; 15(46): 18940, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37965952

RESUMEN

Correction for 'Integrated 4-terminal single-contact nanoelectromechanical relays implemented in a silicon-on-insulator foundry process' by Yingying Li et al., Nanoscale, 2023, https://doi.org/10.1039/d3nr03429a.

14.
Nanoscale ; 15(43): 17335-17341, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37856244

RESUMEN

Integrated nanoelectromechanical (NEM) relays can be used instead of transistors to implement ultra-low power logic circuits, due to their abrupt turn off characteristics and zero off-state leakage. Further, realizing circuits with 4-terminal (4-T) NEM relays enables significant reduction in circuit device count compared to conventional transistor circuits. For practical 4-T NEM circuits, however, the relays need to be miniaturized and integrated with high-density back-end-of-line (BEOL) interconnects, which is challenging and has not been realized to date. Here, we present electrostatically actuated silicon 4-T NEM relays that are integrated with multi-layer BEOL metal interconnects, implemented using a commercial silicon-on-insulator (SOI) foundry process. We demonstrate 4-T switching and the use of body-biasing to reduce pull-in voltage of a relay with a 300 nm airgap, from 15.8 V to 7.8 V, consistent with predictions of the finite-element model. Our 4-T NEM relay technology enables new possibilities for realizing NEM-based circuits for applications demanding harsh environment computation and zero standby power, in industries such as automotive, Internet-of-Things, and aerospace.

15.
Microsyst Nanoeng ; 9: 27, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949734

RESUMEN

Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing.

16.
Sensors (Basel) ; 8(9): 5466-5478, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-27873824

RESUMEN

Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED) principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 µm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 µm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA).

17.
Microsyst Nanoeng ; 4: 12, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31057900

RESUMEN

The outstanding material properties of single crystal diamond have been at the origin of the long-standing interest in its exploitation for engineering of high-performance micro- and nanosystems. In particular, the extreme mechanical hardness, the highest elastic modulus of any bulk material, low density, and the promise for low friction have spurred interest most notably for micro-mechanical and MEMS applications. While reactive ion etching of diamond has been reported previously, precision structuring of freestanding micro-mechanical components in single crystal diamond by deep reactive ion etching has hitherto remained elusive, related to limitations in the etch processes, such as the need of thick hard masks, micromasking effects, and limited etch rates. In this work, we report on an optimized reactive ion etching process of single crystal diamond overcoming several of these shortcomings at the same time, and present a robust and reliable method to produce fully released micro-mechanical components in single crystal diamond. Using an optimized Al/SiO2 hard mask and a high-intensity oxygen plasma etch process, we obtain etch rates exceeding 30 µm/h and hard mask selectivity better than 1:50. We demonstrate fully freestanding micro-mechanical components for mechanical watches made of pure single crystal diamond. The components with a thickness of 150 µm are defined by lithography and deep reactive ion etching, and exhibit sidewall angles of 82°-93° with surface roughness better than 200 nm rms, demonstrating the potential of this powerful technique for precision microstructuring of single crystal diamond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA