Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 241(4): 1690-1707, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037276

RESUMEN

Self-incompatibility plays a vital role in angiosperms, by preventing inbreeding depression and maintaining genetic diversity within populations. Following polyploidization, many angiosperm species transition from self-incompatibility to self-compatibility. Here, we investigated the S-locus in Brassicaceae and identified distinct origins for the sRNA loci, SMI and SMI2 (SCR Methylation Inducer 1 and 2), within the S-locus. The SMI loci were found to be widespread in Cruciferae, whereas the SMI2 loci were exclusive to Brassica species. Additionally, we discovered four major S-haplotypes (BnS-1, BnS-6, BnS-7, and BnS-1300) in rapeseed. Overexpression of BnSMI-1 in self-incompatible Brassica napus ('S-70S1300S6 ') resulted in a significant increase in DNA methylation in the promoter regions of BnSCR-6 and BnSCR-1300, leading to self-compatibility. Conversely, by overexpressing a point mutation of BnSmi-1 in the 'S-70S1300S6 ' line, we observed lower levels of DNA methylation in BnSCR-6 and BnSCR-1300 promoters. Furthermore, the overexpression of BnSMI2-1300 in the 'SI-326S7S6 ' line inhibited the expression of BnSCR-7 through transcriptional repression of the Smi2 sRNA from the BnS-1300 haplotype. Our study demonstrates that the self-compatibility of rapeseed is determined by S-locus sRNA-mediated silencing of SCR after polyploidization, which helps to further breed self-incompatible or self-compatible rapeseed lines, thereby facilitating the utilization of heterosis.


Asunto(s)
Brassica napus , Brassica , ARN Pequeño no Traducido , Brassica napus/genética , Brassica napus/metabolismo , Fitomejoramiento , Brassica/genética , Regiones Promotoras Genéticas/genética , ARN Pequeño no Traducido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Exp Bot ; 74(17): 4994-5013, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37246599

RESUMEN

Cytokinins (CKs) are phytohormones that promote cell division and differentiation. However, the regulation of CK distribution and homeostasis in Brassica napus is poorly understood. Here, the endogenous CKs were first quantified by LC-ESI-MS/MS in rapeseed tissues and visualized by TCSn::GUS reporter lines. Interestingly, the cytokinin oxidase/dehydrogenase BnaCKX2 homologs were mainly expressed in reproductive organs. Subsequently, the quadruple mutants of the four BnaCKX2 homologs were generated. Endogenous CKs were increased in the seeds of the BnaCKX2 quadruple mutants, resulting in a significantly reduced seed size. In contrast, overexpression of BnaA9.CKX2 resulted in larger seeds, probably by delaying endosperm cellularization. Furthermore, the transcription factor BnaC6.WRKY10b, but not BnaC6.WRKY10a, positively regulated BnaA9.CKX2 expression by binding directly to its promoter region. Overexpression of BnaC6.WRKY10b rather than BnaC6.WRKY10a resulted in lower concentration of CKs and larger seeds by activating BnaA9.CKX2 expression, indicating that the functional differentiation of BnaWRKY10 homologs might have occurred during B. napus evolution or domestication. Notably, the haploid types of BnaA9.CKX2 were associated with 1000-seed weight in the natural B. napus population. Overall, the study reveals the distribution of CKs in B. napus tissues, and shows that BnaWRKY10-mediated BnaCKX2 expression is essential for seed size regulation, providing promising targets for oil crop improvement.


Asunto(s)
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Citocininas/metabolismo , Factores de Transcripción/metabolismo , Espectrometría de Masas en Tándem , Semillas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Genomics ; 114(6): 110505, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36265744

RESUMEN

Interspecific hybridization is the intrinsic forces behind genome evolution. Long non-coding RNAs (lncRNAs) are important for plant biological processes regulation. However, it is unclear that these non-coding fractions are impacted by interspecific hybridization. Here we examined the profiles of lncRNAs by comparing them with coding genes in Brassica napus, three accessions of Brassica rapa, and their F1 hybrids. 6206 high-confidential lncRNAs were identified in F 1 hybrids and their parentals, and the lncRNAs transcriptome in the F1 hybrids was reprogrammed by the genome shock. Notably, genome-wide unbalanced of lncRNAs were observed between An and Ar subgenomes, ELD (Expression Level Dominance) was biased toward the An -genome in F1 hybrids, and ELD of non-conserved lncRNAs was more than conserved lncRNAs. Our findings demonstrate that the reprogramed lncRNAs acts as important role in enhancing plant plasticity, leading to the acquisition of desirable traits in polyploid Brassica species.


Asunto(s)
Brassica , ARN Largo no Codificante , Brassica/genética , ARN Largo no Codificante/genética
4.
J Exp Bot ; 73(8): 2336-2353, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35139197

RESUMEN

Interspecific hybridization drives the evolution of angiosperms and can be used to introduce novel alleles for important traits or to activate heterosis in crop breeding. Hybridization brings together gene expression networks from two different species, potentially causing global alterations of gene expression in the F1 plants which is called 'transcriptome shock'. Here, we explored such a transcriptome shock in allotriploid Brassica hybrids. We generated interspecific F1 allotriploid hybrids between the allotetraploid species Brassica napus and three accessions of the diploid species Brassica rapa. RNA-seq of the F1 hybrids and the parental plants revealed that 26.34-30.89% of genes were differentially expressed between the parents. We also analyzed expression level dominance and homoeolog expression bias between the parents and the F1 hybrids. The expression-level dominance biases of the Ar, An, and Cn subgenomes was genotype and stage dependent, whereas significant homoeolog expression bias was observed among three subgenomes from different parents. Furthermore, more genes were involved in trans regulation than in cis regulation in allotriploid F1 hybrids. Our findings provide new insights into the transcriptomic responses of cross-species hybrids and hybrids showing heterosis, as well as a new method for promoting the breeding of desirable traits in polyploid Brassica species.


Asunto(s)
Brassica napus , Brassica , Brassica/genética , Brassica napus/genética , Hibridación Genética , Fitomejoramiento , Poliploidía , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA