Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stat Med ; 43(5): 833-854, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38115199

RESUMEN

Average (bio)equivalence tests are used to assess if a parameter, like the mean difference in treatment response between two conditions for example, lies within a given equivalence interval, hence allowing to conclude that the conditions have "equivalent" means. The two one-sided tests (TOST) procedure, consisting in testing whether the target parameter is respectively significantly greater and lower than some pre-defined lower and upper equivalence limits, is typically used in this context, usually by checking whether the confidence interval for the target parameter lies within these limits. This intuitive and visual procedure is however known to be conservative, especially in the case of highly variable drugs, where it shows a rapid power loss, often reaching zero, hence making it impossible to conclude for equivalence when it is actually true. Here, we propose a finite sample correction of the TOST procedure, the α $$ \alpha $$ -TOST, which consists in a correction of the significance level of the TOST allowing to guarantee a test size (or type-I error rate) of α $$ \alpha $$ . This new procedure essentially corresponds to a finite sample and variability correction of the TOST procedure. We show that this procedure is uniformly more powerful than the TOST, easy to compute, and that its operating characteristics outperform the ones of its competitors. A case study about econazole nitrate deposition in porcine skin is used to illustrate the benefits of the proposed method and its advantages compared to other available procedures.


Asunto(s)
Equivalencia Terapéutica , Tamaño de la Muestra
2.
Pharmaceutics ; 15(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37111763

RESUMEN

The aim of this study was to investigate whether subtle differences in molecular properties affected polymeric micelle characteristics and their ability to deliver poorly water-soluble drugs into the skin. D-α-tocopherol-polyethylene glycol 1000 was used to prepare micelles containing ascomycin-derived immunosuppressants-sirolimus (SIR), pimecrolimus (PIM) and tacrolimus (TAC)-which have similar structures and physicochemical properties and have dermatological applications. Micelle formulations were prepared by thin-film hydration and extensively characterized. Cutaneous delivery and biodistribution were determined and compared. Sub-10 nm micelles were obtained for the three immunosuppressants with incorporation efficiencies >85%. However, differences were observed for drug loading, stability (at the highest concentration), and their in vitro release kinetics. These were attributed to differences in drug aqueous solubility and lipophilicity. Differences between the cutaneous biodistribution profiles and drug deposition in the different skin compartments pointed to the impact of differences in thermodynamic activity. Therefore, despite their structural similarities, SIR, TAC and PIM did not demonstrate the same behaviour either in the micelles or when applied to the skin. These outcomes indicate that polymeric micelles should be optimized even for closely related drug molecules and support the hypothesis that drugs are released from micelles prior to skin penetration.

3.
Int J Pharm ; 604: 120736, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34048926

RESUMEN

Facial angiofibromas are benign tumors characteristic of tuberous sclerosis complex. The disease involves the mTOR pathway and the cutaneous manifestation responds to topical treatment with sirolimus (SIR). However, there are no approved topical SIR products and extemporaneous formulations have been sub-optimal. The aims of this study were (i) to develop aqueous formulations of SIR loaded in polymeric micelles prepared using D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and (ii) to use the cutaneous biodistribution method, in conjunction with a new statistical approach, to investigate the feasibility of SIR delivery to the viable epidermis. Optimized micelle solutions and hydrogels (0.2%) were developed and stable at 4 °C for at least 6 and 3 months, respectively. Cutaneous delivery experiments (infinite and finite dose) using porcine skin demonstrated that both formulations increased SIR cutaneous bioavailability as compared to the control (ointment 0.2%). Moreover, studies with the micellar hydrogel 0.2% demonstrated SIR deposition in the viable epidermis with no transdermal permeation. These encouraging results confirmed that polymeric micelles enabled development of aqueous SIR formulations capable of targeted epidermal delivery. Furthermore, the cutaneous biodistribution provided a detailed insight into drug bioavailability in the different skin compartments that could complement/explain clinical observations of formulation efficacy.


Asunto(s)
Angiofibroma , Esclerosis Tuberosa , Angiofibroma/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos , Micelas , Sirolimus , Porcinos , Distribución Tisular , Esclerosis Tuberosa/tratamiento farmacológico
4.
Int J Pharm ; 607: 120967, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34352336

RESUMEN

The cutaneous biodistribution method (CBM) yields a high-resolution quantitative profile of drug deposition as a function of skin depth. However, it provides limited details about drug spatial distribution or penetration pathways. Mass spectrometry imaging (MSI) can complement the detailed quantitative data generated by CBM studies. The objectives of this work were to use desorption electrospray ionization (DESI)-MSI to (i) investigate the spatial cutaneous distributions of a topically applied drug and excipient and relate them to skin structures and (ii) image endogenous skin components and combine these results to gain insight into drug penetration routes. Porcine skin was used to compare two bioequivalent creams of econazole nitrate (ECZ) and a micelle formulation based on D-α-tocopheryl succinate polyethylene glycol 1000 (TPGS). DESI-MSI successfully imaged the cutaneous spatial distribution of ECZ and TPGS in 40 µm-thick horizontal sections and vertical cross-sections of the skin. Interestingly, clinically bioequivalent formulations did not appear to exhibit the same molecular distribution of ECZ in XY-horizontal sections. DESI-MSI also enabled visualization of TPGS (m/z 772.4706), mainly in the upper epidermis (≤80 µm). In conclusion, through co-localization of drugs and excipients with endogenous elements of the skin, DESI-MSI could further our understanding of the cutaneous penetration pathways of xenobiotics.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Xenobióticos , Animales , Lípidos , Piel , Porcinos , Distribución Tisular
5.
Pharmaceutics ; 11(9)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540410

RESUMEN

A draft guideline from the European Medicines Agency (EMA) highlights the need for methods to assess the quality/equivalence of topical drug formulations. The "cutaneous biodistribution method", which provides insight into a drug's spatial distribution in the epidermis/dermis, was used to compare cutaneous bioavailability of econazole nitrate (ECZ) from a reference medicinal product (RMP) and two approved bioequivalent generic creams under finite dose conditions. Statistically significant differences between the ECZ biodistributions from the RMP/Generics were determined and used with acceptance criteria based on those from the EMA to evaluate bioequivalence. In porcine skin, ECZ deposition in total skin, epidermis, upper and lower dermis from Generic 1 was within the acceptance interval, contrary to Generic 2, which was marginally below it. For human skin, Generic 1 deposition was marginally above the acceptance interval and not bioequivalent. The results were consistent with those using the EMA's acceptance intervals using the ratio of the mean ECZ depositions of Generic 1 and the RMP. Differences identified using this data-rich technique may not translate to observable differences in clinical efficacy; however, generics with non-statistically different biodistributions to the RMP should have a comparable clinical effect. The cutaneous biodistribution method could benchmark the development of topical generic products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA